COMPOUND CRITIQUING APPROACH FOR LAPTOP RECOMMENDATION IN CONVERSATIONAL RECOMMENDER SYSTEM USING COLLABORATIVE FILTERING

Authors

DOI:

https://doi.org/10.31963/intek.v11i2.4893

Keywords:

Apriori algorithm, collaborative filtering, conversational recommender system, compound critiques

Abstract

This study proposes a method for laptop recommendation in a conversational recommender system (CRS) by integrating collaborative filtering with the Apriori algorithm. The CRS interacts with users to help them find laptops that match their preferences, allowing them to provide feedback or critiques on the recommendations. This research emphasizes the use of compound critiques, which allow users to express preferences on multiple attributes at once, leading to more personalized recommendations. The Apriori algorithm identifies frequent itemsets from these critiques, which are then used to iteratively update recommendations. Evaluation results show that the High Support (HS) strategy, which focuses on commonly preferred features, produces more efficient recommendations, with a shorter average session duration of 38.01 seconds compared to the Low Support (LS) 41.30 seconds and Random (RAND) 50.49 seconds. This approach improves the recommendation process by better aligning with user preferences, which in turn improves interaction efficiency. @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:-536869121 1107305727 33554432 0 415 0;}@font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-469750017 -1073732485 9 0 511 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0cm; text-align:center; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:EN-US;}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-size:10.0pt; mso-ansi-font-size:10.0pt; mso-bidi-font-size:10.0pt; mso-ascii-font-family:Calibri; mso-hansi-font-family:Calibri; mso-font-kerning:0pt; mso-ligatures:none; mso-ansi-language:EN-US;}div.WordSection1 {page:WordSection1;}

References

D. Amelia Chandra Et Al., “Penerapan Metode Item Based Collaborative Filtering Berbasis Web Pada Recommender System Laptop,” Engineering And Technology International Journal Juli, Vol. 3, No. 2, Pp. 2714–755, 2021, Doi: 10.55642/Eatij.V3i02.

E. Eli Lavindi And A. Rohmani, “Aplikasi Hybrid Filtering Dan Naïve Bayes Untuk Sistem Rekomendasi Pembelian Laptop Hybrid Filtering And Naïve Bayes Application For Laptop Purchase Recommendation Systems,” Journal Of Information System, Vol. 4, No. 1, Pp. 54–64, 2019.

A. Iovine, F. Narducci, And G. Semeraro, “Conversational Recommender Systems And Natural Language:: A Study Through The Converse Framework,” Decis Support Syst, Vol. 131, Apr. 2020, Doi: 10.1016/J.Dss.2020.113250.

Z. K. Abdurahman Baizal, Y. R. Murti, and Adiwijaya, "Evaluating functional requirements-based compound critiquing on conversational recommender system," 2017 5th Int. Conf. Inf. Commun. Technol. ICoIC7 2017, vol. 0, no. c, 2017, doi: 10.1109/ICoICT.2017.8074656.

Y. Jin, W. Cai, L. Chen, N. N. Htun, And K. Verbert, “Musicbot: Evaluating Critiquing-Based Music Recommenders With Conversational Interaction,” In International Conference On Information And Knowledge Management, Proceedings, Association For Computing Machinery, Nov. 2019, Pp. 951–960. Doi: 10.1145/3357384.3357923.

B. Smyth, L. McGinty, J. Reilly, and K. McCarthy, "Compound critiques for conversational recommender systems," Proc. - IEEE/WIC/ACM Int. Conf. Web Intell. WI 2004, pp. 145–151, 2004, doi: 10.1109/WI.2004.10098.

J. Reilly, K. Mccarthy, L. Mcginty, And B. Smyth, “Explaining Compound Critiques,” Oct. 2005. Doi: 10.1007/S10462-005-4614-8.

A. C. Fatiyah, Z. K. A. Baizal and A. T. Wibowo, "Compound Critiquing for Improving Query Refinement on Conversational Recommender System," 2022 10th International Conference on Information and Communication Technology (ICoICT), Bandung, Indonesia, 2022, pp. 340-345, doi: 10.1109/ICoICT55009.2022.9914858.

C. S. Fatoni, E. Utami, And F. W. Wibowo, “Online Store Product Recommendation System Uses Apriori Method,” In Journal Of Physics: Conference Series, Institute Of Physics Publishing, Dec. 2018. Doi: 10.1088/1742-6596/1140/1/012034.

M. M. Hasan and S. Zaman Mishu, "An Adaptive Method for Mining Frequent Itemsets Based on Apriori And FP Growth Algorithm," 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 2018, pp. 1-4, doi: 10.1109/IC4ME2.2018.8465499.

Y. Djenouri, Z. Habbas, D. Djenouri, And M. Comuzzi, “Diversification Heuristics In Bees Swarm Optimization For Association Rules Mining,” In Lecture Notes In Computer Science (Including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics), Springer Verlag, 2017, Pp. 68–78. Doi: 10.1007/978-3-319-67274-8_7.

J. Reilly, K. McCarthy, L. McGinty, and B. Smyth. Dynamic Critiquing. In P.A. Gonzalez Calero and P. Funk, editors, Proceedings of the European Conference on Case-Based Reasoning (ECCBR-04). Springer, 2004. Madrid, Spain.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, And J. T. Riedl, “Evaluating Collaborative Filtering Recommender Systems.”

M. Al-Maolegi And B. Arkok, “An Improved Apriori Algorithm For Association Rules,” International Journal On Natural Language Computing, Vol. 3, No. 1, Pp. 21–29, Feb. 2014, Doi: 10.5121/Ijnlc.2014.3103.

A. A. Fakhri, Z. K. A. Baizal, And E. B. Setiawan, “Restaurant Recommender System Using User-Based Collaborative Filtering Approach: A Case Study At Bandung Raya Region,” In Journal Of Physics: Conference Series, Institute Of Physics Publishing, May 2019. Doi: 10.1088/1742-6596/1192/1/012023.

Downloads

Published

2024-10-19