Analyzing Public Sentiments on Disaster Relief Efforts Through Social Media Data

Authors

  • Muhammad Rafi Fakhruddin Telkom University
  • Rifki Wijaya Telkom University
  • Moch Arif Bijaksana Telkom University

DOI:

https://doi.org/10.31963/intek.v11i1.4773

Keywords:

Sentiment analysis, SVM, Natural Disaster, Social Media X

Abstract

Social media has become a source of quick but not necessarily accurate information. Especially in social media X, which is often used to share information. This research aims to conduct sentiment analysis on posts related to natural disasters that aim to maximize assistance to victims of natural disasters. This research takes datasets from tweets on social media X, the data will be labeled into positive and negative. And then the preprocessing process will be carried out, in this study, categorization will be carried out on each tweet related to the category, then the data will be divided into training and testing. Then the Term Frequency-Inverse Document Frequency (TF-IDF) feature is used to assist in reducing the weight of words that often appear in the dataset, The next step involves designing a system with a focus on applying the Support Vector Machine (SVM) Polynomial Kernel algorithm which becomes a classifier which will later be used to find the best hyperline or decision boundary that divides each review into two classes, namely positive tweets and negative tweets. Then obtained with a value of Precision of 86.49%, Recall 99.21%, F1-Score 92.42%, and Accuracy of 87.01%. This research is expected to provide involvement in making a fast and effective decision for victims of natural disasters.

References

V. R. Prasetyo, G. Erlangga, and D. A. Prima, "Analisis sentimen untuk identifikasi bantuan korban bencana alam berdasarkan data di Twitter menggunakan metode Kmeans dan Naïve Bayes," J. Teknol. Inform. dan Ilmu Komput. (JTIIK), vol. 10, no. 5, pp. 1055-1062, 2023.

M. Lestandy, A. Abdurrahim, and L. Syafa’ah, "Analisis sentimen Tweet vaksin COVID-19 menggunakan Recurrent Neural Network dan Naïve Bayes," J. RESTI (Rekayasa Sistem dan Teknol. Inform.), vol. 5, no. 4, pp. 802-808, 2021.

P. Arsi and R. Waluyo, "Analisis sentimen wacana pemindahan ibu kota Indonesia menggunakan algoritma Support Vector Machine (SVM)," J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021.

K. W. Gusti, "Perbandingan metode Support Vector Machine dan Logistic Regression untuk klasifikasi bencana alam," Informatik: J. Ilmu Komput., vol. 19, no. 2, pp. 134-140, 2023.

Y. S. Triyantono, S. A. Faraby, and M. Dwifebri, "Analisis sentimen terhadap ulasan film menggunakan word2vec dan SVM," eProceedings of Engineering, vol. 8, no. 4, 2021.

I. F. Rozi, A. T. Firdausi, and K. Islamiyah, "Analisis sentimen pada Twitter mengenai pasca bencana menggunakan metode Naïve Bayes dengan fitur N-Gram," Jurnal Informatika Polinema, vol. 6, no. 2, pp. 33-39, 2020.

J. W. Iskandar, J. Widyadhana, and Y. Nataliani, "Perbandingan Naïve Bayes, SVM, dan k-NN untuk analisis sentimen gadget berbasis aspek," Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 6, pp. 1120-1126, 2021.

M. A. Rosid, et al., "Improving text preprocessing for student complaint document classification using Sastrawi," IOP Conference Series: Materials Science and Engineering, vol. 874, no. 1, IOP Publishing, 2020.

M. Zalukhu, "Analsis dan implementasi metode Naïve Bayes dan SVM pada sentimen pemilihan calon Presiden RI," KETIK: J. Informatika, vol. 1, no. 01, pp. 18-26, 2023.

A. E. Budiman and A. Widjaja, "Analisis Pengaruh Teks Preprocessing Terhadap Deteksi Plagiarisme Pada Dokumen Tugas Akhir," Jurnal Teknik Informatika Dan Sistem Informasi, vol. 6, no. 3, pp. 475-488, 2020.

S. Vijayarani and R. Janani, "Text mining: open source tokenization tools-an analysis," Advanced Computational Intelligence: An International Journal (ACII), vol. 3, no. 1, pp. 37-47, 2016.

R. Koch, The 80/20 Principle: The Secret of Achieving More with Less: Updated 20th Anniversary Edition of the Productivity and Business Classic. Hachette UK, 2011.

S. Qaiser and R. Ali, "Text mining: use of TF-IDF to examine the relevance of words to documents," International Journal of Computer Applications, vol. 181, no. 1, pp. 25-29, 2018.

S. Y. Pangestu, Y. Astuti, and L. D. Farida, "Algoritma Support Vector Machine Untuk Klasifikasi Sikap Politik Terhadap Partai Politik Indonesia," Jurnal Mantik, vol. 3, no. 1, pp. 236-241, Jun. 2019. [Online].Available:http://iocscience.org/ejournal/index.php/mantik/article/view/173. Accessed on: Apr. 22, 2024.

O. I. Gifari, et al., "Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine," Journal of Information Technology, vol. 2, no. 1, pp. 36-40, 2022.

H. Wang dan D. Hu, "Comparison of SVM and LS-SVM for regression," dalam 2005 International Conference on Neural Networks and Brain, vol. 1. IEEE, 2005.

D. Maulina dan R. Sagara, "Klasifikasi artikel hoax menggunakan support vector machine linear dengan pembobotan term frequency-Inverse document frequency," Jurnal Mantik Penusa, vol. 2, no. 1, 2018.

A. Mechelli dan S. Vieira, eds., Machine Learning: Methods and Applications to Brain Disorders. Academic Press, 2019.

P. Panavaranan dan Y. Wongsawat, "EEG-based pain estimation via fuzzy logic and polynomial kernel support vector machine," dalam The 6th 2013 Biomedical Engineering International Conference. IEEE, 2013.

H. Al Azies, D. Trishnanti, dan E. M. PH, "Comparison of kernel support vector machine (SVM) in classification of human development index (HDI)," IPTEK Journal of Proceedings Series, vol. 6, pp. 53-57, 2019.

M. K. Delimayanti, et al., "Pemanfaatan Metode Multiclass-SVM pada Model Klasifikasi Pesan Bencana Banjir di Twitter," Edu Komputika Journal, vol. 8, no. 1, pp. 39-47, 2021.

A. R. D. Pratiwi dan E. B. Setiawan, "Implementation of rumor detection on Twitter using the SVM classification method," Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 4, no. 5, pp. 782-789, 2020.

B. W. Rauf, "Sentimen Analisis Pertambangan Di Konawe Utara Dengan Metode Naïve Bayes," dalam Prosiding Seminar Nasional Pemanfaatan Sains dan Teknologi Informasi, vol. 1, no. 1, 2023.

L. Geni, E. Yulianti, dan D. I. Sensuse, "Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using IndoBERT Language Models," Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), vol. 9, no. 3, pp. 746-757, 2023.

Downloads

Published

2024-04-01

Issue

Section

ARTICLES

Most read articles by the same author(s)