Fatigue Characteritics of Medium Carbon Steel after Heat Treatment Using Sand as Cooling Media

Authors

  • Sunardi Sunardi Universitas Sultan Ageng Tirtayasa http://orcid.org/0000-0003-1182-194X
  • Randu Randu Universitas Sultan Ageng Tirtayasa
  • Erny Listijorini Universitas Sultan Ageng Tirtayasa
  • Iman Saefuloh Universitas Sultan Ageng Tirtayasa
  • Hamdan Akbar Notonegoro Universitas Sultan Ageng Tirtayasa
  • Miftahul Jannah Universitas Sultan Ageng Tirtayasa

DOI:

https://doi.org/10.31963/intek.v8i2.2817

Keywords:

medium carbon steel, heat treatment, sand, hardness, fatigue life

Abstract

Stress concentrations cause many machine element failures. Failure will occur more rapidly if the machine elements obtain repeated and fluctuating loading. For this reason, the material for machine elements must have better fatigue life. There are various attempts made to increase material life and other mechanical properties. In this study, the research sample used is AISI 4140 steel. The samples obtain hardening followed by cooling and tempering. The hardening temperature is 8500C with a holding time of 17 minutes. The cooling media in this research are dry sand, semi-wet sand, and wet sand. Wet measurements based on volumetric ratios. Semi-wet sand with a ratio of sand and water 4: 1, sandy sand 4: 2. The final process is tempering treatment, with a temperature of 2500C. The material fatigue test refers to the JIS Z 2274 Standard. From this study, the heat treatment given can reduce the fatigue life of the material, even though the hardness increases. The higher the cooling rate, the hardness of the material increases, but the fatigue life is low.

Author Biographies

Sunardi Sunardi, Universitas Sultan Ageng Tirtayasa

Department of Mechanical Engineering

Randu Randu, Universitas Sultan Ageng Tirtayasa

Department of Mechanical Engineering

Erny Listijorini, Universitas Sultan Ageng Tirtayasa

Department of Mechanical Engineering

Iman Saefuloh, Universitas Sultan Ageng Tirtayasa

Department of Mechanical Engineering

Hamdan Akbar Notonegoro, Universitas Sultan Ageng Tirtayasa

Department of Mechanical Engineering

Miftahul Jannah, Universitas Sultan Ageng Tirtayasa

Department of Mechanical Engineering

References

J. Volak and V. Mentl, “After 150 years of research, fatigue still causes 85% of failures,†WIT Trans. Eng. Sci., vol. 77, pp. 137–146, 2013, doi: 10.2495/MC130121.

K. S. Sabarinath L., Mahesh, “Effect of Flame Hardening and Various Quenching Medium on the Mechanical and Metallurgical Properties of Grey Cast Iron Lathe Bed,†Int. J. Adv. Sci. Res. Eng., vol. 2, no. 7, pp. 1–7, 2016, [Online]. Available: http://www.ijasre.net/uploads/1/2781_pdf.pdf.

A. T. Aprilliansyah, Sunardi, M. S. Anwar, and E. Mabruri, “Pengaruh Suhu dan Waktu Tempering terhadap Struktur Mikro, Kekerasan, dan Ketahanan Abrasif Baja Cor Modifikasi CA-15,†J. Met. Indones., vol. 41, no. 1, pp. 29–36, 2019, [Online]. Available: https://jurnalmetal.or.id/jmi/article/view/174/pdf.

E. Mabruri, R. R. Pasaribu, M. T. Sugandi, and S. Sunardi, “Effect of High Temperature Tempering on the Mechanical Properties and Microstructure of the Modified 410 Martensitic Stainless Steel,†AIP Conf. Proc., vol. 1964, no. May, pp. 1–7, 2018.

S. Prifiharni, M. T. Sugandi, R. R. Pasaribu, S. Sunardi, and E. Mabruri, “Investigation of Corrosion Rate on the Modified 410 Martensitic stainless steel in Tempered Condition,†IOP Conf. Ser. Mater. Sci. Eng., vol. 541, pp. 1–7, 2019, doi: 10.1088/1757-899X/541/1/012001.

S. Sunardi, M. Fawaid, and D. H. Nandiawan, “Pengaruh Variasi Suhu pada Proses Self Tempering dan Variasi Waktu Tahan pada Proses Tempering Terhadap Sifat Mekanis Baja AISI 4140,†Vanos J. Mech. Eng. Educ., vol. 1, no. 1, pp. 79–88, 2016, [Online]. Available: http://jurnal.untirta.ac.id/index.php/vanos/article/view/835/654.

Sunardi, R. Lusiani, and A. O. Fitra, “Pengaruh Pack Carburizing dan Kekasaran Permukaan Terhadap Umur Fatik Material Poros Baja S45C,†J. Foundry, vol. 3, no. 2, pp. 7–12, 2013.

L. Hao, M. Sun, and D. Li, “The effect of quenching media on the microstructure and mechanical properties of SA508-3 steel,†Adv. Mater. Res., vol. 311–313, pp. 974–977, 2011, doi: 10.4028/www.scientific.net/AMR.311-313.974.

S. Ojha, N. S. Mishra, and B. K. Jha, “Effect of cooling rate on the microstructure and mechanical properties of C-Mn-Cr-B Steel,†Bull. Mater. Sci., vol. 38, no. 2, pp. 531–536, 2015.

D. A. Fadare, T. G. Fadara, and O. Y. Akanbi, “Effect of Heat Treatment on Mechanical Properties and Microstructure of NST 37-2 Steel,†J. Miner. Mater. Charact. Eng., vol. 10, no. 03, pp. 299–308, 2011, doi: 10.4236/jmmce.2011.103020.

B. N. Sarada, P. L. S. Murthy, and S. Ramani, “Effect of Quenching Media on the Mechanical Properties of Al6061-TiO2 Metal Matrix Composites,†Int. J. Curr. Eng. Sci. Res., vol. 3, no. 5, pp. 2394–0697, 2016.

O. K. Abubakre, U. P. Mamaki, and R. A. Muriana, “Investigation of the Quenching Properties of Selected Media on 6061 Aluminum Alloy,†J. Miner. Mater. Charact. Eng., vol. 08, no. 04, pp. 303–315, 2009, doi: 10.4236/jmmce.2009.84027.

H. I. Akbar, E. Surojo, D. Ariawan, and A. R. Prabowo, “Experimental study of quenching agents on Al6061–Al2O3 composite: Effects of quenching treatment to microstructure and hardness characteristics,†Results Eng., vol. 6, no. February, p. 100105, 2020, doi: 10.1016/j.rineng.2020.100105.

S. J. Mosa, “Effect of different quenching media on mechanical properties of AISI 1018 low carbon steel,†J. Mech. Eng. Res. Dev., vol. 42, no. 3, pp. 81–83, 2019, doi: 10.26480/jmerd.03.2019.81.83.

I. Equbal, P. Alam, R. Ohdar, K. A. Anand, and M. S. Alam, “Effect of Cooling Rate on the Microstructure and Mechanical Properties of Medium Carbon Steel,†Int. J. Metall. Eng., vol. 5, no. 2, pp. 21–24, 2016, doi: 10.5923/j.ijmee.20160502.01.

A. D. Zeyad Kadhim, “Effect of Quenching Media on Mechanical Properties for Medium Carbon Steel,†J. Eng. Res. Appl. www.ijera.com ISSN, vol. 6, no. 85, pp. 2248–962226, 2016.

K. Dybowski, J. Sawicki, P. Kula, B. Januszewicz, R. Atraszkiewicz, and S. Lipa, “The effect of the quenching method on the deformations size of gear wheels after vacuum carburizing,†Arch. Metall. Mater., vol. 61, no. 2B, pp. 1057–1062, 2016, doi: 10.1515/amm-2016-0178.

M. Ali, D. Porter, J. Kömi, M. Eissa, H. El Faramawy, and T. Mattar, “Effect of cooling rate and composition on microstructure and mechanical properties of ultrahigh-strength steels,†J. Iron Steel Res. Int., vol. 26, no. 12, pp. 1350–1365, 2019, doi: 10.1007/s42243-019-00276-0.

E. Wołowiec-Korecka, P. Zgórniak, A. Brewka, and K. Krupanek, “Influence of quenching temperature of the individual quenching method on the geometrical dimensions of the elements,†IOP Conf. Ser. Mater. Sci. Eng., vol. 743, no. 1, 2020, doi: 10.1088/1757-899X/743/1/012048.

N. M. Ismail, N. A. A. Khatif, M. A. K. A. Kecik, and M. A. H. Shaharudin, “The Effect of Heat Treatment on the Hardness and Impact Properties of Medium Carbon Steel,†IOP Conf. Ser. Mater. Sci. Eng., vol. 114, no. 012108, pp. 1–4, 2016, doi: 10.1088/1757-899X/114/1/012108.

V. Malau and W. I. Fauzi, “Effects of Heat Treatments on Mechanical Properties, Specific Wear and Corrosion Rate of HQ 809 Steel for Machinery Components Application,†Proc. - 2018 4th Int. Conf. Sci. Technol. ICST 2018, vol. 1, no. August 2018, pp. 1–6, 2018, doi: 10.1109/ICSTC.2018.8528600.

I. Iloabachie, “Effect of Water Quenching Temperatures on the Hardness of Al-4.5%Cu,†J. Eng. Technol., vol. 7, no. 3, pp. 122–130, 2018.

M. Araghchi, H. Mansouri, and R. Vafaei, “The Effects of Quenching Media and Aging on Residual Stress and Mechanical Properties of 2024 Aluminum Alloy,†in Proceedings of Iran International Aluminum Conference (IIAC2016), 2016, no. May, pp. 1–3.

D. Rasouli, S. Khameneh Asl, A. Akbarzadeh, and G. H. Daneshi, “Effect of cooling rate on the microstructure and mechanical properties of microalloyed forging steel,†J. Mater. Process. Technol., vol. 206, no. 1–3, pp. 92–98, 2008, doi: 10.1016/j.jmatprotec.2007.12.006.

C. L. Yang, Y. B. Li, B. Dang, H. Bin Lü, and F. Liu, “Effects of cooling rate on solution heat treatment of as-cast A356 alloy,†Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 10, pp. 3189–3196, 2015, doi: 10.1016/S1003-6326(15)63952-8.

B. Mathai, C. Mathew, P. K, and C. K. Varghese, “Effect of silicon on microstructure and mechanical properties of Cu-Fe alloys,†Int. J. Eng. Trends Technol., vol. 29, no. 6, pp. 299–303, 2015, doi: 10.1016/j.jallcom.2016.12.352.

E. Mohseni, M. M. Ranjbar, M. A. Yazdi, S. S. Hosseiny, and E. Roshandel, “The effects of silicon dioxide, iron(III) oxide and copper oxide nanomaterials on the properties of self-compacting mortar containing fly ash,†Mag. Concr. Res., vol. 67, no. 20, pp. 1112–1124, 2015, doi: 10.1680/macr.15.00051.

V. Kumar, H. Mehdi, and A. Kumar, “Effect of silicon content on the mechanical properties of aluminum alloy,†Int. Res. J. Eng. Technol., vol. 2, no. 4, pp. 1326–1330, 2015, doi: 10.1088/1757-899X/71/1/012057

Downloads

Published

2021-10-19

Most read articles by the same author(s)