POTENSI ZAT WARNA DARI EKSTRAK ETANOL KULIT MANGGIS DAN KAYU SAPPANG SEBAGAI KALORIMETRI ANION
Abstract
Dyes from mangosteen skin and sappang tree have been isolated using ethanol as a solvent. Antocianinecompound is obtained from mangosteen skin while braziline is from sappang tree. Both of compounds can be used asanion clorimethric due to their hidrocyle and chromophoregroupactive sites. Dyes from mangosteen skin and sappangtree have been tested on 10 gram of several types of saturated anions (carbonate, sulfate, phosphate, cyanide, acetate,borax, nitrite, chloride, bromide, and iodide). The results of the tests show that thecolor of the dye from mangosteen skinchanges in cyanide and hydroxide anions. On the other hand, the color of the dye from sappang tree changes incarbonate, phosphate, cyanide, acetate, nitrite, and hydroxile. UV/Vis is used to detect the limit of cyanide anion.Methanol and acetone show positive results on both of dyes in cyanide anion. Detection limit of antocyanine andbraziline are 4x10-4 Mand 3x10-4 M respectively. With addition of cyanide anion, antocyanine in acetone has abatochromic shift at 2x10-4M and dye from sappang tree has detection limit at 1x10-4 M.References
Afkhami, A. and Nahid, S., 2007, A Novel Cyanide Sensing Phase Based on Immobilization of Methyl Violet on A
Triacetylcellulose Membrane, Sensor and Actuator B, 122, 437-441.
Anggraini, S., Sintesis Senyawa 3-(4-hidroksi-3-metoksifenil)-1-fenil-2-propen-1-on dari Vanilin dan Uji Potensinya
sebagai Larvasida untuk Aedes aegypti dan sensor anion, Skripsi, Jurusan Kimia FMIPA UGM, Yogyakarta.
Arty, I.S., Timmerman, H., Samhoedi, M., Sastrohamidjojo, Sugiyanto, and Goot, H., 2000, Synthesis of
benzyldeneacetophenones and their inhibition of peroxidation, J. Med. Chem., 35, 449-457.
Harborne J. B. dan Grayer R. J., 1988. The Anthocyanins. Di dalam J. B. Harborne (ed). The Flavonoids. Chapman and
Hall, London.
Lin, C.I., Selvi., Fang, J.M., Chou, P.T., and Lai, C.H., 2007, Pyreno[2,1-b]pyrrole and Bis(pyreno[2,1-b]pyrrole) as
Selective Chemosensors of Fluoride Ion: A Mechanistic Study, J. Org. Chem., 29, 3537-3542.
Martınez-Manez, R., and Sancenon, F., 2003, Fluorogenic and Chromogenic Chemosensors and Reagents for Anions,
Chem. Rev., 103, 4419-4476
McDonagh, C., Burke, C.S., and MacCraith, B.D., 2008, Optical Chemical Sensors, Chem. Rev., 108, 400-422.
Morton, J., 1978. Jambolan. Di dalam: Julia F. Morton, Miami, FL. Fruits of warm climates.
http://www.hort.purdue.edu/newcrop/morton/jambolan.html (29 Mei 2016).
Purwono, B., Anwar, C., and Hanapi, A., 2013, Syntheses of Azo-imine Derivatives from Vanillin as an acid Base
Indicator, Indo. J. Chem., 13 (1), 1 – 6.
Reena, V., Suganya, S., and Velmathi, S., 2013, Synthesis and Anion Binding Studies of Azo-Schiff Bases: Selective
Colorimetric Fluoride and Acetate Ion Sensors, J. of Fluorine Chem., 153, 89-95.
Reichardt, C., 1994, Solvatochromic Dyes as solvent Polarity Indicators, Chem. Rev., 94, 8, 2319-2358.
Satheshkumar, A., Mossalamy, E.H., Manivannan, R., Parthiban, C., Al-Harbi, L. M., Kosa, S., and Elango, K.P., 2014,
Anion Induced Azo-Hydrazone Tautomerism for the Selective Colorimetric Sensing of Fluoride Ion,
Spectrochim. Acta, Part A, 128, 798-805.
Shao, J., Lin, H., and Lin H., 2009, A Novel Chromo- and Fluorogenic Dual Responding H2PO4
- Receptor Based on an
Azo Derivative, Dyes Pigm., 80, 259-263.
Singhal, M., Paul, A., and Singh, P., 2014, Synthesis and Reducing Power Assay of Methyl Semicarbazone Derivatives,
J. Saudi Chem. Soc., 18, 121-127.
Timberlake, C.F. dan Bridle P., 1983. Anthocyanins. Di dalam J. Walford (ed). Developments in Food Colours. Applied
Science Publishers LTD, London.
Xu, Z., Chen, X., Kim, H. N., and Yoon, J., 2010, Sensor for the Optical Detection of Cyanide Ion, Chem. Soc. Rev., 39,
-137.
Zhang, C., and Suslick, K., S., 2005, A Colorimetric Sensor Array for Organics in Water, J. Am. Chem. Soc., 127,
-11549.