Data Acquisition System on Cocoa Bean Fermenter Using ESP32 Based on MQQT Protocol
Keywords:
Cocoa Bean Fermentation, IoT-based Data Acquisition System, ESP32, MQTT Protocol, Real-time MonitoringAbstract
The fermentation process of cocoa beans is a critical stage in chocolate production that affects the final quality of the product. To ensure that fermentation takes place optimally, monitoring parameters such as temperature, humidity, and pH is necessary. This research aims to develop and validate an Internet of Things (IoT)-based data acquisition system that uses ESP32 and MQTT protocols to monitor the fermentation process of cocoa beans. The system consists of an ESP32 module connected to DHT22 sensors to measure temperature and humidity, and a pH meter to measure acidity. The data collected by the sensors is sent in real-time via a wireless connection to an MQTT broker, where it can be monitored continuously. System testing was conducted in a small-scale fermentation environment. Validation results show that the system is capable of providing accurate and consistent data when compared to manual measurements using standardized tools. The difference between the data collected by the system and manual measurements was within acceptable tolerance limits, indicating that the system is reliable enough to be used in small-scale applications. The system also demonstrated fast response to changes in fermentation conditions, and stable data connection with minimal latency via the MQTT protocol. The developed data acquisition system has successfully acquired data and validated it using standard measuring instruments. The average data error for the pH sensor is 2.78%, temperature sensor 1.41%, and humidity sensor 1.94%. These error values indicate that the performance of the sensors used is good.References
[1] M. Gonibala, R. Handry, and L. Maya M., “Kajian Fermentasi Biji Kakao (Theobroma Cacao L.) Menggunakan Fermentor Tipe Kotak Dinding Ganda Aerasi,” in Jurnal Teknologi Industri Pangan, 2019, pp. 1–5.
[2] H. A. Sandi, Sudjadi, and Darjat, “Perancangan Sistem Akuisisi Data Multisensor (Sensor Oksigen, Hidrogen, Suhu, Dan Tekanan) Melalui Website Berbasis Android,” Transient J. Ilm. Tek. Elektro, vol. 7, no. 2, pp. 457–463, 2018.
[3] K. S. Budi and Y. Pramudya, “Pengembangan Sistem Akuisisi Data Kelembaban Dan Suhu Dengan Menggunakan Sensor Dht11 Dan Arduino Berbasis Iot,” vol. VI, pp. SNF2017-CIP-47-SNF2017-CIP-54, 2017, doi: 10.21009/03.snf2017.02.cip.07.
[4] R. Muhamad Efendi, M. Arman, A. Setyawan, J. Refrigeasi, and D. Tata, “Sistem Akuisisi Data Berbasis Internet of Things (IoT) pada Cold Storage Menggunakan PLC SIEMENS LOGO!,” in Prosiding Industrial Research Workshop and National Seminar, 2023, pp. 193–198.
[5] S. Andy and B. Rahardjo, “Keamanan Komunikasi Pada Protokol MQTT untuk Perangkat IoT,” Semin. Nas. Tek. Elektro 2016, no. 10, pp. 176–184, 2016.
[6] A. Juliansyah, R. Ramlah, and D. Nadiani, “Sistem Pendeteksi Gerak Menggunakan Sensor PIR dan Raspberry Pi,” JTIM J. Teknol. Inf. Dan Multimed., vol. 2, no. 4, pp. 199–205, 2021.
[7] S. Siswanto, W. Gata, and R. Tanjung, “Kendali Ruang Server Menggunakan Sensor Suhu DHT 22, Gerak Pir dengan Notifikasi Email,” Pros. SISFOTEK, vol. 1, no. 1, pp. 134–142, 2017.
[8] N. F. Sheppard Jr, M. J. Lesho, P. McNally, and A. S. Francomacaro, “Microfabricated conductimetric pH sensor,” Sensors Actuators B Chem., vol. 28, no. 2, pp. 95–102, 1995.
[9] S. P. Sakti, PENGANTAR TEKNOLOGI SENSOR: Prinsip Dasar Sensor Besaran Mekanik. Universitas Brawijaya Press, 2017. [Online]. Available: http://www.nber.org/papers/w16019
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.