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Abstract: One important thing of design the real system is to make a simulation to find 

out the optimal and the best performance of the system. Bus suspension has been 

modeling for some control and simulation systems and this paper is aimed to find the 

better performance of bus suspension system with PID Controller. The main idea of this 

paper is to discuss about the correction for better result in controlling the bus suspension 

system using PID Controller through Simulink in Matlab program. The result shows that 

in this design, the PID controller zeroes are located at -4 and -27 on the real axis.  The 

desired pole locations have been determined and are located at -362, -31, -1 -2-j12.3 and -

2+j12.3. For the value of PID, it desired to put the gains for Ki, Kp, and Kd respectively: 

11153000, 3065000, and 100261. From the plotted graphic, it can be seen that there is an 

approximate overshoot of 12% and a settling time of around 1 second.  

 

Key word: PID controller, bus suspension, simulation and modelling. 

 

I.  INTRODUCTION 

 

Designing an automatic suspension system for a bus turns out to be an 

interesting control problem. When the suspension system is designed, a 1/4 bus model 

(one of the four wheels) is used to simplify the problem to a one dimensional spring-

damper system. This model meets the following requirements: the system is 4th-order, 

there are two pairs of complex conjugate poles, the system is linear and time-invariant, 

the system has a sub optimal response and system requires active-closed loop control 

to maintain stable and optimum control. 

 

II.  RESEARCH METHODOLOGY 

 

Research methodology applies in this scientific paper is case study with real 

bus equation system and using approximation values for all used variables. Moreover, 

to assist the reliable result of this study, Matlab programming is applied, particularly 

for analyzing desired graphic of design system using Simulink in Matlab.  The design 

system of bus suspension is seen such below: 

A diagram of this system is shown below (figure 1). 
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Figure 1: Model Of Bus Suspension System 

 

We will define the equations, transfer function(s), transient Characteristics, 

etc, for the physical system of a Bus Suspension as the following: 

 

Natural Behavior assumption of the System (system equations) 

Where:  

 Body mass (M1) = 2500 kg. 

 Suspension mass (M2) = 320 kg. 

 Spring constant of suspension system (K1) = 80,000 N/m. 

 Spring constant of wheel and tire (K2) = 500,000 N/m. 

 Damping constant of suspension system (b1) = 350 Ns/m. 

 Damping constant of wheel and tire (b2) = 15,020 Ns/m. 

 Control force (U) = force from the controller we are going to design. 

 (W) The road disturbance in this problem will be simulated by a step input. 

 (X1-W) the distance between suspension and the ground which is very 

difficult to measure because, the ground surface is always changed. 

 (X2-W) the deformation of the tire which is negligible. 

 (X1-X2) the distance between suspension and the body which we will use it as 

an output instead of (X1-W) in our problem. 

 

We can write the dynamic equations from the Newton's law and picture above, 

as the following: 

 
The transfer function (converting them into Laplace Model) of the 

formulations above is: 
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By compensating U(s) into equation (2), we obtaining: 

 
Now, we will use matrices to solve the two equations as below: 

 
Obtaining determinant: 

 
Calculate the inverse of matrix A: 

 
Simplifying it by multiplying with both side of equation: 

 
In order to obtain the transfer function G1(s) we will put W(s) = 0 and we 

consider input U(s) only. 

 
The equation stated above is actual force equation only. 

To obtain the transfer function G2(s) we will put U(s) = 0 and we consider 

input W(s) only. 
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The equation above is disturbance force equation only. 

 

Discussion 

Characterize the transient and steady-state response of the system using Matlab 

G1(s) = numU/denU (actuated force equation) 

Matlab program: 

m1=2500; 

m2=320; 

k1=80000; 

k2=500000; 

b1 = 350; 

b2 = 15020; 

det=[(m1*m2) (m1*(b1+b2))+(m2*b1) (m1*(k1+k2))+(m2*k1)+(b1*b2) 

(b1*k2)+(b2*k1) k1*k2]; 

numU=[(m1+m2) b2 k2]; 

denU=det 

Gp=TF(numU,denU) 

The transfer function is imported to LTI view to examine the transient and 

steady state response of the system as can be seen below in figure 2. 

 



SIN
ERGI

SIN
ERGI

A. M. Shiddiq Yunus,  Correction For Pid Controller Value For Bus 

Suspension Model With Matlab 

 

133 

133  

 
 

Figure 2. Transient And Steady State Response 

 

Optimal Performance Parameters to be Achieved Using Closed-loop Control 

In designing optimal parameters for our bus suspension model we have to take 

into consideration the passengers comfort. Optimum control can be achieved with an 

unlimited money source but this is unrealistic for a common bus. Therefore we 

determined the maximum overshoot should be less than 5% of the original step 

disturbance. The second important parameter is settling time, this should be less than 5 

seconds. This would mean that as soon as the bus encounters a disturbance on the road 

the passengers would initially feel 5% of the total tire displacement from the ground 

and very small bus oscillations for a total of 5 seconds. 

In figure 3 we simulated a closed loop system with our performance 

parameters entered into Matlab’s Sisotool design tool box. The straight vertical line 

represents our settling time and 2 oblique lines is our maximum overshoot.  

 

 
Figure 3. Closed Loop System With Design Constraints 
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Figure 4. Zoom Up Of Dominate Poles In Closed Loop System With Design 

Constraints 

 

In our closed loop system we have 2 poles close to the origin (the 2 poles are 

represented as red dots). It is the position of these 2 poles that are of the most concern, 

because they directly affect our system response times. Since they are so close to the 

origin they slow down the system a lot and cause the long settling time. The aim of 

our PID controller is to create a root locus where we can pull these poles as far left as 

possible. Pulling the poles to the left will also help satisfy our design parameters. The 

more our dominate poles are pulled towards the left of the design constraint lines the 

more they satisfy our parameters.   

After examining the system and attempting to apply simple control methods 

we have decided to control our system with a PID controller. As we know that a PID 

controller is a type of compensator and we used it to reduce sensitivity to parameter 

variations and disturbances with improving steady-state error. Figure 8 shows the 

typical position of a PID controller placed within the control loop  

Figure 5. Typical Arrangement Of PID Control Loop 
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Figure 6. Elements Within A PID Controller 

Where: 

Kp = Proportional gain: increase the loop gain and reduce the sensitivity.  

Ki = Integral gain: increase the order of the system and reduce steady-state error. 

Kd = Derivative gain: stabilize the system.  

The ideal transfer function of the PID controller looks like the following:  

 
From this equation we have two new zeros and one new pole at the origin 

added to our system. In choosing the position of the poles and zeros of the PID we 

chose to place zeros at -4 and -27 and a pole at zero. The position of these poles bends 

the root locus to a desirable position.  Then we chose where we wanted our resultant 

characteristic poles of our compensated system on the branches of the root locus by 

altering the closed loop gain. We chose pole locations at -362, -31, -4, s+2-j12.3 and 

s+2+j12.3 which gave us a suitable response to a step input matching our design 

constraints  

 
Figure 7. Pole Location Of Dominate Poles 
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Figure 8. Pole Locations Of Desired System 

 

From figure 7 and 8, the red dots represent the pole location of our required 

controlled system. Figure 9 displays the step input of our controlled system. The pole 

locations seem to satisfy our design criteria. 

 

 
 

Figure 9. Step Response Of Desired Closed Loop Transfer Function 

 

III. PID CALCULATIONS 
 

There are many methods in tuning PID controller which include empirical and 

analytical methods. Empirical methodology involves manually manipulating PID 

gains to improve the response of the current system.  Nichols Ziegler and Tyreus-

Luyben are empirical methodologies which were designed to tune closed loop control 

system for the desired response.  These methods are used to adjust parameters to 

correct steady-state errors and to obtain the desirable response. 
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The analytical method involves determining the values of the integral, derivative and 

proportional gain using rigorous calculations if the plant is known.  This technique 

requires placing the closed loop poles at the desired locations to manipulate the root 

locus to improve the response of the current system design.  The gains of the PID 

controller can therefore be calculated by comparing the characteristic equation of the 

current closed loop system to the desired characteristic equation. 

The analytical method was used in this design since the plant has been defined and 

that the desired closed loop poles have been determined. 

 

Analytical Calculations 

The analytical method requires two constraints which include desired 

locations of the poles and the location of the zeroes and poles of the PID controller. In 

this design, the PID controller zeroes are located at -4 and -27 on the real axis.  The 

desired pole locations have been determined and are located at -362, -31, -1 -2-j12.3 

and -2+j12.3. Refer to figure 3 for pole placement diagram. 

Closed loop gain with PID controller: 

)(1

)(

)(

)(

sGpKds
s

Ki
Kp

sGKds
s

Ki
Kp

sR

sC
CLTF

p

 
Where: Gp(s) is the transfer function of the plant, Kp is the proportional gain, 

Ki is the integration gain and Kd is the derivative gain. 

 

Transfer function of the plant: 

10929374

2

104 + s 101.377 + s 101.481 + s 103.854 + s 800000

500000 + s 15020 + s 2820
)(sGp

 
Current closed loop system: 

10929374

2

10929374

2

104 + s 101.377 + s 101.481 + s 103.854 + s 800000

500000 + s 15020 + s 2820
1

)
104 + s 101.377 + s 101.481 + s 103.854 + s 800000

500000 + s 15020 + s 2820

Kds
s

Ki
Kp

Kds
s

Ki
Kp

CLTF

 
By simplifying the mathematical equation, the following characteristic 

equation was obtained. 

KisKiKp

sKiKdKp

sKdKpsKds

625.0)500001078.18625.0(

)25.172110525.3625.01078.18(

)25.18511078.1810525.3()175.4810525.3(

3

233

333435

 
Desirable characteristic equation calculation: 
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j12.3)2(sj12.3)-2(s4)(s31)(s362)(s  
By expanding the equation, the following characteristic equation was 

obtained. 
66253445 1097.610166.210577.110454.1401 sssss  

Determining the gains was done by comparing the current system 

characteristic equation and the desirable characteristic equation. 

175.4810525.3401 3 Kd   

25.18511078.1810525.310454.1 334 KdKp  

25.172110525.3625.01078.1810577.1 335 KiKdKp  

500001078.18625.010166.2 36 KiKp  

Ki625.01097.6 6
 

 

The gains were calculated as the following: 

Integration Gain (ki)      = 11153000  

Proportional Gain (kp) = 3065000 

Derivative Gain (kd)  = 100261 

 

Analysis of Calculated Values  

Transferring the calculated values into the simulink tool box we get the 

following step response. Seen in figure 10. 

 
Figure 10. Simulink Response Of Compensated System 

 

It can be seen there is an approximate overshoot of 12% and a settling time of 

around 1 second.  
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Figure 11. Side By Side Comparison. Left, Sisotool’s Lti View. Right, Simulink 

Response 

 

A side by side comparison of the sisotool model LTI response and our 

equivalent calculated simulink model reviles a slight difference in overshoot. The 

settling time and period is the same. They both peak at the same times but our 

overshoot percentage is slightly different. We wanted a 5% overshoot but our 

calculated values resulted in almost a 12 % overshoot. 

We believe the cause of the overshoot difference is due to the transient spike 

in the first few seconds on the LTI view. We believe this is due to not sampling at a 

high enough rate, however we could weren’t able to change the sampling time within 

sisotool. Even though our values didn’t match our original design requirements we 

believe it is appropriate for a bus suspension system. 

 

Analysing the disturbance 

Another equation was acquired during the transfer function analysis. The 

referenced website refers to this as a disturbance equation so we decided to model it. 

After putting it through a step input we get the following waveform in figure 12. 
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Figure 12. Characteristic Of Disturbance Equation 

 

The disturbance equation seems to model what we believe to be a rocky road. 

We decided to see how our PID controlled system would handle the disturbance. We 

placed the disturbance into our control loop as shown in figure 13. To test the 

disturbance a step input is applied to the system, then after 2 seconds we applied a step 

input to the disturbance. The output is shown in figure 14. 

 

 
Figure 13. Simulink Diagram Of Out Disturbance Test 
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Figure 14. Output Of Disturbance Simulation  

 

IV. CONCLUSION 
 

It can be seen that our closed loop PID controller handles disturbances in the system 

similar to the way it handles a step function. The effect of any disturbance is 

minimized to within %12 and stabilizes around 1 second after. The assignment is 

completed if it relaxes the design requirements. It is believe that the calculated values 

are correct and their responses should match. More control effort is required if the 

design was to continue and investigate a system with 5% overshoot. This would mean 

larger gains for our Kp, Kd, and Ki values. These values are already high and if we 

were to pursue more control it will not reflect the reality and limitations of PID 

controllers. It believes bus passengers will still feel comfortable with a 12% initial 

disturbance.  
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