Analisis Kapasitas Drainase Sinrijala Terhadap Operasi dan Pemeliharaan

Sugiarto Badaruddin^{1,a}, Andi Nahrisa², Nurhikmah Alam³, Dr.Ir. Basyar Bustan, M.T.⁴, Hasdaryatmin Djufri, S.T., MT.⁵

1,2,3,4,5 Jurusan Teknik Sipil Program Studi D4 Jasa Konstruksi Politeknik Negeri Ujung Pandang Makassar, Sulawesi Selatan, Indonesia Jalan Perintis Kemerdekaan KM 10 Makassar 90425 Indonesia a sugibadaruddin@poliupg.ac.id

Abstrak—Drainase Sinrijala merupakan salah satu jaringan sistem drainase perkotaan kota Makassar yang memiliki banyak permasalahaan. Permasalahan-permasalahan tersebut diantaranya sedimentasi yang menumpuk pada dasar saluran, tumpukan sampah rumah tangga dan limbah industri, permasalahan interkoneksi saluran sekunder dan tersier ke saluran primer, serta eksisting struktur bangunan yang mengalami kerusakan.Dari permasalahan tersebut mengakibatkan terjadinya genangan di beberapa titik pada daerah sekitar drainase.Permasalahan sistem drainase sangat erat kaitannya dengan operasi dan pemeliharaan.Sehingga tujuan dari penelitian ini yaitu untuk menganalisis kapasitas Drainase Sinrijala dan mencari solusi alternative dalam melakukan operasi dan peningkatan pemeliharaan untuk kapasitas Sinrijala.Dalam penelitian ini dilakukan dua analisis yaitu analisis kondisi saluran dan analisis kinerja operasi dan pemeliharaan saluran. Analisis terkait kondisi saluran dengan melakukan inventarisasi kondisi eksisting saluran dan menghitung debit penampang saluran (Qs) dan debit rencana (Qt) untuk mendapatkan nilai kapasitas saluran. Analisis kapasitas penampang dilakukan dengan menggunakan aplikasi HEC-RAS versi 4.1.0. Selain itu, melakukan penilaian terhadap kinerja operasi dan pemeliharaan dengan penyebaran kuesioner pada instansi terkait yang berwenang dalam pengelolaan drainase perkotaan kota Makassar. Penilaian responden menggunakan metode skala likert dan menganalisisnya dengan menggunakan aplikasi IBM SPSS versi 26. Berdasarkan hasil penelitian yang dilakukan diperoleh debit rencana yang dihasilkan pada drainase Sinrijala adalah $Q2 = 8,798 \text{ m}^3/\text{detik}$ dan $Q5 = 10,304 \text{ m}^3/\text{detik}$. Dari hasil simulasi eksisting dengan Q 2 tahun diperoleh P.16, P.17, P.18, P.19, P.20, P.21, P.22, P.23, P.24, P.25, P.26, P.27, P.28, P.29, P.30, P.32, P.33, dan P.34 tidak memenuhi syarat kapasitas saluran, sementara untuk Q 5 tahun tidak memenuhi syarat kapasitas saluran pada P.16, P.17, P.18, P.19, P.20, P.21, P.22, P.23, P.24, P.25, P.26, P.27, P.28, P.28, P.29, P.30 P.32, P.33, dan P.34. Sementara untuk penilaian kinerja, variabel Fisik Bangunan (X4) merupakan faktor yang berpengaruh dominan dalam kinerja peningkatan kapasitas Drainase Sinrijala, upaya dalam mengatasi permasalahan banjir dan genangan adalah melakukan normalisasi berupa pengerukan, penambahan tanggul dan perbaikan dinding saluran yang mengalami kerusakan berat

menjadi prioritas utama untuk meningkatkan fisik bangunan drainase Sinrijala.

Kata kunci :Drainase Sinrijala, Kapasitas, Operasi dan Pemeliharaan, HEC-RAS, SPSS

I. Pendahuluan

Kota Makassar adalah salah satu kota metropolitan di Indonesia dengan berbagai aktivitas. Dengan kesibukan tersebut tentu harus didukung dengan insfrastruktur perkotaan yang baik termasuk pada sistem drainase perkotaanya. Nyatanya, sistem drainase Kota Makassar belum terlalu memadai di segala penjuru kota. Hal tersebut yang mengakibatkan adanya dampak banjir dan kondisi drainase yang tidak sehat.

Drainase Sinrijala merupakan salah satu jaringan sistem drainase perkotaan kota Makassar yang memiliki banyak permasalahaan. Permasalahan-permasalahan tersebut diantaranya sedimentasi yang menumpuk pada dasar saluran, tumpukan sampah rumah tangga dan limbah industri, permasalahan interkoneksi saluran sekunder dan tersier ke saluran primer, serta kondisi eksisting struktur bangunan yang mengalami kerusakan.

Menurut penuturan masyarakat sekitar, jika terjadi hujan dengan intensitas yang tinggi maka akan terjadi genangan dan banjir di pemukiman tersebut. Daerah tersebut juga merupakan daerah padat penduduk sehingga tidak adanya ruang untuk resapan air hujan. Tergenangnya daerah sekitar saluran di sepanjang drainase disebabkan oleh beberapa faktor, salah satunya yakni air yang mengalir pada saluran melebihi kapasitas tampungan saluran yang tidak mampu mengendalikan debit banjir maksimum sehingga air meluap dan

akhirnya menimbulkan genangan di daerah sekitarnya. Penyebab dari berkurangnya kapasitas saluran dapat diakibatkan dari kondisi eksisting saluran yang sudah tidak memadai.

Drainase Sinrijala kurang mendapat perhatian mengenai pemeliharaan drainase, sehingga tidak bisa dipungkiri bahwa permasalahan yang datang pada lingkungan sekitar drainase tersebut berkaitan terhadap kurangnya operasi dan pemeliharaan sistem drainase. Pelaksanaan operasi dan pemeliharaan juga harus selaras dengan permasalahan yang ada pada drainase tersebut. Oleh karena itu perlu dilakukan sebuah kajian untuk menganalisis permasalahan yang ada pada Drainase Sinrijala.

Berdasarkan pada permasalahan tersebut, penulis mengangkatnya sebagai penelitian skripsi tentang "Analisis Kapasitas Drainase Sinrijala Terhadap Operasi dan Pemeliharaan" yang diharapkan dapat menjadi referensi bagi pihak-pihak terkait dalam menanggulangi permalahan-permasalahan yang ada.

Dari latar belakang yang telah disampaikan, rumusan masalah dari penelitian ini yaitu :

- 1) Bagaimana kapasitas eksisting Drainase Sinrijala Kota Makassar?
- 2) Bagaimana solusi yang paling tepat dalam pelaksanaan operasi dan pemeliharaan dalam peningkatan kapasitas pada Drainase Sinrijala Kota Makassar?

Adapun tujuan penelitian ini yaitu:

- 1) Menganalisis kapasitas dan dimensi saluran eksisting pada Drainase Sinrijala Kota Makassar.
- Memperoleh solusi yang tepat berdasarkan alternatif yang ada dalam melakukan operasi dan pemeliharaan untuk peningkatan kapasitas pada Drainase Sinrijala Kota Makassar.

II. Tinjauan Pustaka

A. Pengertian Drainase

Drainase mempunyai arti mengalirkan, menguras, membuang, atau mengalihkan air. Secara umum, drainase didefinisikan sebagai serangkaian bangunan air yang berfungsi untuk mengurangi dan/atau membuang kelebihanair dari suatu kawasan atau lahan, sehingga lahan dapat difungsikan secara optimal. Drainase juga diartikan sebagai usaha untuk mengontrol kualitas air tanah dalam kaitannya dengan sanitasi. (Dr. Ir. Suripin, M.Eng. 2004). Sedangkan pengertian drainase kota pada dasarnya telah diatur dalam SK menteri PU No. 233 tahun 1987.

B. Permasalahan Drainase Perkantoran

Banyak faktor yang mempengaruhi dan pertimbangan yang matang dalam perencanaan antara lain:

- 1) Peningkatan Debit
- 2) Penataan Lingkungan
- 3) Perubahan Tata Guna Lahan
- 4) Kapasitasi Saluran
- 5) Penyalahgunaan fungsi saluran

C. Perencanaan Operasi dan Pemeliharaan Prasarana dan Prasarana Drainase

Operasi dan pemeliharaan prasarana dan sarana drainase perkotaan merupakan bagian dari sistem drainase perkotaan. Sistem yang baik, jika tidak dibarengi dengan operasi dan pemeliharaan yang baik, maka tidak akan berfungsi dengan baik. Oleh karena itu operasi dan pemeliharaan drainase perkotaan sangat penting dalam rangka mensejahterakan masyarakat, yaitu dengan cara mengurangi atau menghilangkan genangan air atau banjir yang sangat merugikan masyarakat.

Pemeliharaan sistem drainase perkotaan mencakup bentuk pemeliharaan dan perbaikan yang dilakukan untuk menjaga tetap berfungsinya sistem drainase yang ada jenis pemeliharaan meliputi:

- 1) Pemeliharaan rutin adalah pekerjaan yang selalu dilakukan berulang-ulang pada waktu tertentu misalnya setiap hari, minggu, ataubulan.
- Pemeliharaan berkala merupakan pekerjaan yang dilaksanakan pada waktu tertentu, misalnya setahun sekali atau setahun duakali.
- 3) Pemeliharaan khusus dapat dilakukan apabila prasarana dan sarana mengalami kerusakan yang sifatnya mendadak.
- 4) Rehabilitasi, dilakukan apabila prasarana dan sarana mengalami kerusakan yang menyebabkan bangunan tidakberfungsi.

D. Kinerja Jaringan Kanal/Saluran

Kapasitas dan kondisi fisik jaringan yang dibagi menjadi beberapa komponen, yaitu terdiri dari saluran penerima (interseptor drain), saluran pengumpul (colector drain), saluran pembawa (conveyor drain), saluran induk (main drain) dan bangunan pelengkap lainnya seperti gorong-gorong, dan bangunan pertemuan (bak control).

Tabel Pedoman Penilaian Jaringan Salran/Kanal

	Bad	an Saluran	
Kriteria		Kondisi Bangunan	
Kinena	Baik	Cukup	Rusak
Kapasitas	Memenuhi	Memenuhi	Tidak memenuhi
(Dimensi	kapasitas	kapasitas	kapasitas
penampang	pembebanan sesuai	pembebanan sesuai	pembebanan sesua
melintang)	dengan	dengan	dengan
	perencanaan dan	perencanaan dan	perencanaan.
	mempunyai tinggi	mempunyai tinggi	Kondisi rata-rata
	jagaan yang cukup	jagaan yang sesuai	diatas 0% - 49%
	untuk mencegah air	dengan muka air	
	melimpah.	maksimum.	
	Kondisi rata-rata	Kondisi rata-rata	
	diatas 80% - 100%	diatas 50% - 79%	
Pengendapan	Tidak ada endapan	Ada endapan yang	Ada endapan yang
/Sedimen	yang berpengaruh	berpengaruh	berpengaruh
	terhadap kapasitas	terhadap kapasitas	terhadap kapasitas
	rencana saluran.	rencana saluran (<	rencana saluran (>
	Kondisi rata-rata	30%).	30%).
	diatas 80% - 100%	Kondisi rata-rata	Kondisi rata-rata
		diatas 50% - 79%	diatas 0% - 49%
Kerusakan	Profil saluran	Profil saluran	Profil saluran
	keadaannya masih	keadaannya ada	keadaannya ada
	baik/tidak ada	kerusakan (< 30%).	kerusakan (> 30%)
	kerusakan.	Kondisi rata-rata	Kondisi rata-rata
	Kondisi rata-rata diatas 80% - 100%	diatas 50% - 79%	diatas 0% - 49%

E. Kajian dan Analisis Drainase dan Konservasi Air

Analisis yang dilakukan meliputi hal-hal sebagai berikut:

- 1) Analisis kondisi eksisting, yaitu:
- a) Analisis kapasitas sistem drainase eksisting, kapasitas saluran, segmen saluran, dan bangunan pendukungnya.
- b) Bandingkan analisis pada point a) dengan kapasitas rencana (awal), jika kapasitas eksisting lebih besar atau sama dengan kapasitas awal, maka komponen sistem drainase yang bersangkutan masih aman, sebaliknya perlu dilakukan tindakan.
- 2) Analisis kebutuhan, yaitu :
- a) Tentukan rencana saluran sesuai topografi dan rencana tata guna lahan dan/atau tata ruang. Dalam penataan jaringan saluran drainase diusahakan sebanyak mungkin mengikuti pola eksisting dan alur alam. Kembangkan sistem gravitasi, sistem pompa hanya dipakai kalau tidak ada alternative lain.
- b) Tentukan kala ulang pada masing-masing saluran dan/atau segmen saluran sesuai dengan klarifikasi kota dan orde saluran.
- c) Analisis hujan kawasan dan intensitas hujan dengan kala ulang yang diperlukan.
- d) Hitung debit rencana masing-masing saluran dan/atau segmen saluran dengan metode yang

- sesuai, untuk sistem pompa dan/atau sistem *polder* perlu dihitung hidrograf banjir.
- e) Analisis perbedaan antara kebutuhan (point d) dan kondisi yang ada. Apabila kapasitas saluran eksisting lebih besar atau sama dengan debit rencana, maka saluran yang ada dapat digunakan. Apabila saluran eksisting lebih kecil dari rencana maka saluran tersebut perlu ada tindakan.
- f) Tindakan yang dilakukan dilakukan diarahkan untuk penurunan debit, dengan mengimplementasikan fasilitas pemanenan air hujan. Jika dengan tindakan ini kapasitas saluran masih lebih kecil dari debit yang akan terjadi, baru dilakukan peningkatan kapasitas.

3) Analisa solusi

Dari peta genangan, kemudian dibuat beberapa alternative pemecahan atau solusi dan dipilih satu alternative yang paling efisien dan efektif. Alternatif itu yang dijadikan dasar untuk perencanaan detail dan penyusunan program tahunan.

F. Kriteria Perencanaan Hidrologi

1) Analisa Curah Hujan Rata-Rata Aljabar

$$P = \frac{P1 + P2 + P3 + \dots + Pn}{n} = \frac{\sum_{i=1}^{n} Pi}{n}$$

Dimana:

P1,,Pn = Curah hujan yang tercatat di pos penakar hujan 1,2,...,n

N = Banyaknya pos penakar hujan

2) Uji Konsistensi

$$Sk^{**} = \frac{Sk^*}{D_y}$$

$$Dy^{2} = \sum_{i=1}^{N} \frac{(Y_{i} - \bar{Y})^{2}}{N}$$

Dimana:

Sk* = Nilai kumulatif penyimpangannya terhadap nilai rata-rata.

Yi = Nilai data Y ke i \bar{Y} = Nilai Y rata-rata N = Jumlah data Y

Sk** = Rescaled Adjusted Partial Sums (RAPS)

Dy = Deviasi standar seri data Y

Setelah nilai Sk** diperoleh untuk setiap k, tentukan nilai Q dan R terhitung dengan rumus :

$$Q = |Sk^{**}|$$
 maks

atau

$$R = Sk^{**} maks - Sk^{**} min$$

Bandingkan, untuk jumlah data (N) dan derajat kepercayaan (α) tertentu, nilai-nilai dibawah ini:

- a) O terhitung dengan Okritis
- b) R terhitung dengan R_{kritis}

Maka seri data yang dianalisis adalah konsisten.

3) Distribusi Probabilitas

Distribusi Probabilitas Log Pearson Type III

$$Log X_T = \overline{Log X} + K_T \times S Log X$$

 $Log X_T = Nilai logaritmis hujan rencana dengan$ periode ulang T

 $\overline{Log \ X}$ = Nilai rata-rata dari $\log X = \frac{\sum_{i=1}^{n} Log \ X_i}{n}$

S Log X= Deviasi Standar dari Log X
S Log X=
$$\sqrt{\frac{\sum_{i=1}^{n}(Log X_i - \overline{Log X})^2}{n-1}}$$

= Variabel standar, besarnya bergantung koefisien kepencengan (Cs atau G),

4) Uji Distribusi Probabilitas

Metode Chi-Kuadrat (
$$\chi^2$$
)
$$x^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i}$$

Dimana:

Oi

= Parameter Chi-Kuadrat terhitung

= Frekuensi yang diharapkan sesuai dengan pembagian kelasnya

= Frekuensi yang diamati pada kelas

yang sama

= Jumlah sub kelompok n

Metode Smirnov-Kolmogorof

$$P(Xi) = \frac{n+1}{i}$$

Dimana:

n = Jumlah data

= Nomor urut data (setelah diurut dari i besar ke kecil atau sebaliknya)

5) Intensitas Hujan Rencana

$$I = \frac{R_{24}}{24} \left(\frac{24}{t_c}\right)^{2/3}$$

Dimana:

= Intensitas curah hujan (mm/jam) I

R24 = Curah hujan harian maksimum atau

hujan rencana (mm)

 t_{c} = waktu konsentrasi (iam)

6) Debit Banjir Rencana

$$\mathbf{Q} = \mathbf{0.00278} \times \mathbf{C} \times \mathbf{I} \times \mathbf{A}$$

Dimana:

= Debit puncak limpasan permukaan 0

 (m^3/det)

C = Angka pengaliran

= Luas daerah pengaliran (Km²) Α I = Intensitas curah hujan (mm/jam)

7) Debit Air Kotor

Adapun besarnya kebutuhan air penduduk rata-rata adalah 150 liter/orang/hari. Sedangkan debit air kotor yang harus dibuang di dalam saluran adalah 70% dari kebutuhan air bersih sehingga besarnya air buangan adalah $(suhardiono, 1984:39) = 150 \times 70\% = 105$ liter/orang/hari = 0,00121 liter/dtk/orang.

$$Q_{ak} = \frac{pn \times q}{A}$$

Dimana:

Qak = Debit Air Kotor

Pn = Jumlah Penduduk(jiwa)

= Jumlah Air Buangan (ltr/dtk/orang) q

= Luas Daerah(km²) Α

G. Kriteria Perencanaan Hidrolika dengan HEC-RAS

Tiga komponen analisis hidrolik satu dimensi, yaitu:

- 1) Perhitungan profil permukaan air aliran lunak (steadyflow)
- 2) Simulasi aliran tak lunak (*unsteadyflow*)
- 3) Perhitungan SedimentTransport

Adapun langkah-langkahnya adalah sebagai berikut:

Melakukan pengukuran langsung di lapangan untuk mencari nilai kecepatan aliran dan tinggi aliran di beberapa titik, sedikitnya tiga titik yaitu di hulu, hilir, dan di tengah saluran atau yang mewakili.

- b) Dari hasil pengukuran yang diperoleh maka dicari nilai debitnya.
- Nilai debit tersebut dimasukkan ke dalam model saluran yang telah dibuat pada programHEC-RAS.
- d) Membuat dan mengisi geometri data sungai yang ditinjau (koordinat x, y untuk potongan memanjang, penampang melintang).
- e) Koefisien Manning berdasarkan penampang sungai.
- f) Memasukkan data aliran, aliran *steady* atau *unsteady*.
- g) Setelah memasukkan data geometri dan data aliran, maka selanjutnya me-*running* simulasi.
- h) Setelah pemrosesan simulasi selesai, maka HEC-RAS dapat menampilkan hasil simulasi tiap-tiap penampang melintang dan simulasi aliran secara keseluruhan disepanjang alur drainase.

Untuk kekasaran manning yang digunakan disesuaikan dengan kondisi Drainase Sinrijala bantaran kiri, kanan, dan dasar sungai.

Tabel Koefisien Kekasaran Manning untuk Saluran

Saluran	Bahan	Koefisien Manning, n
	Lurus, baru, seragam, landai dan bersih	0,016 - 0,033
т 1.	Berkelok, landau dan berumput	0,023 - 0,040
Tanah	Tidak terawat dan kotor	0,050 - 0,140
	Tanah berbatu, kasar dan tidak teratur	0,035 - 0,045
Pasangan	Batu kosong	0,023 - 0,035
	Pasangan batu belah	0,017 - 0,030
	Halus, sambungan baik dan rata	0,014 - 0,018
Beton	Kurang halus dan sambungan kurang rata	0,018 - 0,030

Sumber: Ir. Darmadi, MM,MT: 2016

H. Software IBM SPSS Statistik Versi 26

Statistik yang termasuk software dasar SPSS yaitu:

- a) Statistik Deskriptif: Tabulasi Silang, Frekuensi, Deskripsi, Penelusuran, Statistik Deskripsi Rasio
- Statistik Bivariat: Rata-rata, t-test, ANOVA, Korelasi (bivariat, parsial, jarak), Nonparametric tests.
- c) Prediksi Hasil Numerik: Regresi Linear.
- d) Prediksi untuk mengidentifikasi kelompok: Analisis Faktor, Analisis *Cluster* (twostep, K-means, hierarkis), Diskriminan.

Untuk dapat memahami cara kerja *software* SPSS, berikut dikemukakan cara pengujian SPSS:

1) Uji Kualitas Data

a) Uji Validitas

- Jika r hitung > r tabel (uji 2 sisi dengan sig. 0,05) maka instrumen atau item-item pertanyaan berkorelasi signifikan terhadap skor total (dinyatakan valid).
- O Jika r hitung < r tabel (uji 2 sisi dengan sig. 0,05) maka instrumen atau item-item pertanyaan tidak berkorelasi signifikan terhadap skor total (dinyatakan tidak valid).

b) Uji Reliabilitas

Pengujian ini menggunakan metode *Cronbach Alpha* dengan nilai sebesar 0,06. Apabila *Cronbach Alpha* < 0,6, maka butir pertanyaan tersebut tidak reliable

2) Uji Asumsi Klasik

a) Uji Multikolonieritas

Dilakukan dengan menghitung nilai Variance Inflation Factor (VIF) dari tiaptiap variabel independen. Nilai VIF kurang dari 10 menunjukkan bahwa korelasi antar variabel independen masih bisa ditolerir.

b) Uji Heterodedastisitas

Dilakukan menggunakan metode Uji Glejser, dimana Uji Gejser dimaksudkan untuk meregresinilai absoluteresidual terhadap variabel independen .Dengan syarat nilai signifikan> 0,05 maka tidak terjadi heteroskedastisitas.

3) Uji Normalitas

Penelitian yang menggunakan metode yang lebih handal untuk menguji data mempunyai distribusi normal atau tidak yaitu dengan melihat grafik *Normal Probability Plot*. Model regresi yang baik adalah data distribusi normal atau mendekati normal. Untuk mendeteksi normalitas dapat dilakukan dengan melihat penyebaran data (titik) pada sumbu diagonal grafik (Ghozali, Imam. 2009).

4) Uji Hipotesis

 uji persamaan regresi linear berganda Untuk menguji hipotesis tersebut, maka rumus persamaan regresi yang digunakan adalah sebagai berikut:

$Y = a + b1X1 + b2X2 + \dots bnXn$

Keterangan:

Y = Variabel *Dependen* (Terikat)

a = Konstanta

b1, b2, ... b7 = Koefisien regresi untuk X1, X2, ... Xn

X1 = Variabel *Independen* 1 (Bebas)

X2 = Variabel *Independen* 2 (Bebas)

Xn = Variabel Independen n (Bebas)

5) Uji t Parsial

- a) Jika nilai signifikansi < 0,05 maka berarti variabel independen atau variabel X secara parsial berpengaruh terhadap variabel dependen atau variabel Y.
- b) Jika nilai t_{hitung}> tt_{abel} maka artinya variabel independen (X) secara parsial berpengaruh terhadap variabel dependent (Y). Dasar pengambilan keputusan uji t parsial berdasarkan nilai hitung dan tabel dapat ditentukan dengan rumus :

$$t_{\text{tabel}} = (\alpha/2:n-k-1)$$

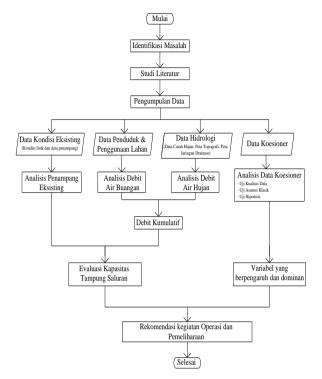
6) Uji F Simultan

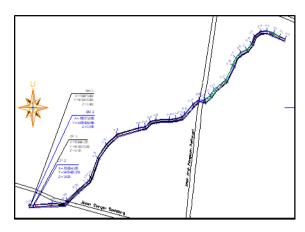
- jika nilai signifikansi < 0,05 maka berarti variabel independen atau variabel X secara simultan berpengaruh terhadap variabel dependen atau variabel Y.
- o jika nilai F_{hitung}> Ft_{abel} maka artinya variabel independen (X) secara simultan berpengaruh terhadap variabel dependent (Y). Dasar pengambilan keputusan uji F simultan berdasarkan nilai hitung dan tabel dapat ditentukan dengan rumus:

$$\mathbf{F}_{\text{tabel}} = (\mathbf{k} ; \mathbf{n} - \mathbf{k})$$

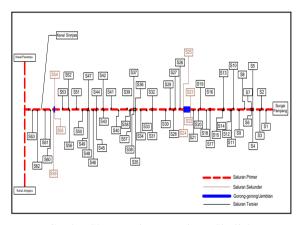
III. Metodologi Penelitian

Berikut adalah diagram alir penelitian




Diagram Alir Penelitian

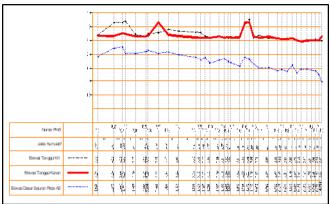
IV. Hasil dan Pembahasan


A. Analisis Kondisi Eksisting

Lokasi penelitian ini yaitu Drainase Sinrijala masuk pada wilayah kecamatan Rappocini, Tamalate dan Makassar kota Makassar dengan panjang saluran drainase 2,363 km.

Survey pengukuran di lapangan, ditetapkan 34 patok pengamatan dengan interval rata-rata 50 m, namun disesuaikan pula dengan kondisi di lapangan. Survey yang dilakukan berupa pengukuran memajang (long) dan melintang (cross). Titik awal patok (P.0) di mulai pada daerah muara Drainase Sinrijala yakni di percabangan Kanal Sinrijala — Sungai Pampang. Dan titik akhir pengukuran (P.34) pada daerah hulu Drainase Sinrijala di percabangan Drainase Sinrijala — Drainase Jongaya dan Panampu.

Gambar Plotting Titik-titik Pengukuran


Gambar Skema Jaringan Drainase Sinrijala

Drainase Sinrijala merupakan saluran utama yang membuang air dari kumpulan saluran sekunder dan tersier ke badan air atau sungai yang memiliki cathment area seluas $= 0.8489 \text{ km}^2$.

Gambar Cathment Area Drainase Sinrijala

Berdasarkan hasil survey di lapangan,kemiringan dasar saluran terjadi kelandaian pada beberapa titik saluran. Hal tersebut mengakibatkan laju aliran sangat lambat menuju ke muara sungai Pampang.

Gambar Long Section Profil

Tabel Kondisi Eksisting Drainase Sinrijala

Tubbi Honor Excising Diamase Shirjana				
Dinding Saluran				
Kondisi	Panjang (km)	Persentase (%)		
Baik	2,819	59,649		
Rusak Sedang	1,660	35,114		
Rusak Berat	0,248	0,248		
Outlet Saluran		•		
Penampang	Ukuran	Jumlah		
-	ø < 0,2 m	11		
Lingkaran	Ø 0,2 − 1,0 m	30		
_	Ø > 1 m	3		
	< 0,2 × 0,2 m	5		
Persegi	$0.2 \times 0.2 \text{ m} - 1.0 \times 1.0 \text{ m}$	11		
_	> 1.0 - 1.0 m	4		
Tanggul				
Kondisi	Panjang (km)	Persentase (%)		
Baik	0,667	14,163		
Belum Memiliki Tanggul	4,057	85,837		
Pengaman Kanal (railing)				
Kondisi	Panjang (m)	Persentase (%)		
Baik	858,365	18,163		
Rusak	1330,084	28,144		
Belum Memiliki Railing	2537,551	53,693		
Jalan Inspeksi				
Paving Block	2692,041	56,962		
Aspal	1137,811	24,076		
Perkerasan Tanah Biasa	137,323	2,906		
Belum Memiliki Jalan	758,825	16,056		
Pintu Air				
Tidak difungsikan s	ebagaimana mestinya dan kurang	g dirawat		
Trash Rack				
Ве	elum terdapat trash rack			

Belum terdapat pompa banjir Sumber : Hasil Survey Lapangan : 2020

Pompa Banjir

B. Analisis Data Penduduk

Jumlah penduduk pada daerah layanan Drainase Sinrijala terdiri dari kecamatan Rappocini dengan luas 0,278 km² sebesar 5566 jiwa, kecamatan Tamalate dengan luas 0,189 km² sebesar 4752 jiwa dan kecamatan Makassar dengan luas 0,382 km² sebesar 13477 jiwa. Jadi jumlah penduduk pada daerah layanan dengan total 0,849 km² sebesar 23755 jiwa.

C. Analisis Hidrologi

1) Uji Konsistensi

Tabel RAPS Stasiun Panakukkang

do or rer r	i o o cubi					
Tahiun	Hujan Harian Max	Sk*	[Sk*]	Dy2	Sk**	[Sk**]
2010	91,00	45,44	-45,444	206,52	0,42077	-0,4208
2011	90,00	46,44	-46,444	215,71	0,43003	-0,43
2012	115,00	21,44	-21,444	45,99	0,19856	-0,1986
2013	193,00	-56,56	56,5556	319,85	-0,5237	0,52365
2014	135,00	1,44	-1,4444	0,21	0,01337	-0,0134
2015	139,00	-2,56	2,55556	0,65	-0,0237	0,02366
2016	142,00	-5,56	5,55556	3,09	-0,0514	0,05144
2017	178,00	-41,56	41,5556	172,69	-0,3848	0,38476
2018	145,00	-8,56	8,55556	7,32	-0,0792	0,07922
Rata-rata	136,44	Γ	у	108,00		
1	V			9		
D)y			108		
Sk**	maks			0,43		
Sk**min				-0,52		
Q				0,43		
R				0,92		
Q/	√n			0,14		
R/	√n			0,32		

Sumber: Hasil Olah Data: 2020

Tabel RAPS Stasiun Bawail IV

Tahun	Hujan Harian Max	Sk*	[Sk*]	Dy2	Sk**	[Sk**]
2015		16.60	1//	27.56	0.252	0.252
2015	169,00	-16,60	16,6	27,56	-0,373	0,373
2016	173,00	-20,60	20,6	42,44	-0,4629	0,46288
2017	166,00	-13,60	13,6	18,50	-0,3056	0,30559
2018	132,00	20,40	-20,4	41,62	0,45839	-0,4584
2019	122,00	30,40	-30,4	92,42	0,68308	-0,6831
R ata-rata	152,40	D	у	44,50		
1	V			5		
D	у			44,50		
Sk**:	maks			0,68		
Sk**	min			-0,46		
Q				0,68		
F	R			1,15		
Q/	√n	0,31				
R/				0,51		
C 4 TT	14 O4 4 D	2020				

Sumber: Hasil Olah Data: 2020

2) Analisa Curah Hujan Maksimum Harian Rata-Rata Tabel Hujan Wilayah

No	Tahun –	Stasiun Cura	Stasiun Curah Hujan		
No	1 and	Panakuk ang	Bawil 4	– Hujan Wilayah	
1	2010	91	-	91	
2	2011	90	-	90	
3	2012	115	-	115	
4	2013	193	-	193	
5	2014	135	-	135	
6	2015	139	169	154	
7	2016	142	173	157.5	
8	2017	178	166	172	
9	2018	145	132	138.5	
10	2019	-	122	122	
		Juml ah		1368,00	
		Rh rata-rata (X)		136,80	

Sumber: Hasil Olah Data: 2020

3) Analisis Distribusi Frekuensi Tabel Parameter Statistik Curah Hujan

No	Tahun	Rh (Xi)	Rh rata- rata (X)	(Xi - X)	(Xi - X) ²	(Xi-X) ³	(Xi - X) ⁴
1	2010	91	136,80	-45,80	2097,64	-96071,91	4400093,57
2	2011	90	136,80	-46,80	2190,24	-102503,23	4797151,26
3	2012	115	136,80	-21,80	475,24	-10360,23	225853,06
4	2013	193	136,80	56,20	3158,44	177504,33	9975743,23
5	2014	135	136,80	-1,80	3,24	-5,83	10,50
6	2015	154	136,80	17,20	295,84	5088,45	87521,31
7	2016	157.5	136,80	20,70	428,49	8869,74	183603,68
8	2017	172	136,80	35,20	1239,04	43614,21	1535220,12
9	2018	138,5	136,80	1,70	2,89	4,91	8,35
10	2019	122	136,80	-14,80	219,04	-3241,79	47978,52
Jumlah	1368	-	0,00	10110,10	22898,64	21253183,60	
Rata-rata	136.8	-	-	-	-	-	
S tandar Deviasi		33,52					
N		10					
Cs		0,08					
Ck		3,34					
Cv				(),25		
Ck	acil Olah	Data : 20	20	3	3,34		

Sumber: Hasil Olah Data: 2020

Tabel Uji Distribusi Frekuensi

No	Jenis Distribusi	Syarat	Hasil Hitungan	Kesimpulan
1	Normal	Cs≈0	Cs = 0,08	Tidak Memenuhi
1	Nominal	Ck = 3	Ck = 3,34	Tidak Memenuhi
2	Log Normal	$Cs \approx 3 \ Cv$	Cs = 0,08	Tidak Memenuhi
3	Gumbel	Cs≈1,14	Cs = 0,08	Tidak Memenuhi
3	Gumbel	$\mathbf{Ck} \approx 5,4002$	Ck = 3,34	Tidak Memenuhi
	Log	Cs positif atau negatif	Cs = 0,08	Memenuhi
4	Pearson Type III			Memenuhi

Sumber: Hasil Olah Data: 2020

4) Perhitungan Distribusi Probabilitas Tabel Perhitungan Log Pearson Type III

No	Tahun	Xi	Log Xi	$(\text{Log Xi} - \text{Log X})^2$	$(\text{Log Xi - Log X})^3$
1	2010	91	1,959	0,02715	-0,00447
2	2011	90	1,954	0,02875	-0,00487
3	2012	115	2,061	0,00398	-0,00025
4	2013	193	2,286	0,02617	0,00423
5	2014	135	2,130	0,00004	0,00000
6	2015	154	2,188	0,00406	0,00026
7	2016	157.5	2,197	0,00540	0,00040
8	2017	172	2,236	0,01248	0,00139
9	2018	138.5	2,141	0,00031	0,00001
10	2019	122	2,086	0,00140	-0,00005
	Juml ah	1	21,238	0,10974	-0,00336
	Log X			2,124	
	S			0,110	
	Cs			-0,347	

Sumber: Hasil Olah Data: 2020

Tabel Nilai G Interpolasi

Tr	G	Cs1	Cs	Cs2	G1	G2
2	0,058	-0,3	-0,347	-0,4	0,050	0,066
5	0,854	-0,3	-0,347	-0,4	0,853	0,855

Sumber: Hasil Olah Data: 2020

Tabel Hasil Perhitungan Log Pearson Type III

Tr	Log X	G	S	Log G	Rt (mm)
2	2,124	0,058	0,110	2,130	134,943
5	2,124	0,854	0,110	2,218	165,233

Sumber: Hasil Olah Data: 2020

Tabel Curah Hujan Rencana Periode Ulang T Tahun dengan Metode Log Pearson Type III

Periode Ulang (Tahun)	Curah Hujan Rencana (mm)
2	134,943
5	165,233

Sumber: Hasil Olah Data: 2020

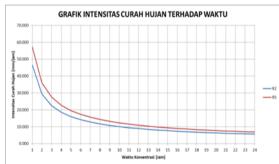
5) Pengujian Distribusi Probabilitas

Tabel Distribusi Probabilitas dengan Chi Kuadrat

No	Probabilitas	Jumlal	n Data	O: E:	$X^2 = ((Oi - Ei)^2)/Ei$	
INO	(%)	Oi	Ei	OI - EI	X = ((OI - EI))/EI	
1	77 <x<112< td=""><td>2</td><td>2</td><td>0</td><td>0</td></x<112<>	2	2	0	0	
2	112 <x<147< td=""><td>4</td><td>2</td><td>2</td><td>2</td></x<147<>	4	2	2	2	
3	147 <x<182< td=""><td>3</td><td>2</td><td>1</td><td>0,5</td></x<182<>	3	2	1	0,5	
4	182 <x<217< td=""><td>1</td><td>2</td><td>-1</td><td>0,5</td></x<217<>	1	2	-1	0,5	
- 5	x>217	0	2	-2	2	
	Jumlah	10	10	0	5	

Sumber: Hasil Olah Data: 2020

Tabel Uji Distribusi Probabilitas Smirnov Kolmogorov


	\mathcal{C}						
M	Xi	P(x) = M/(n+1)	P(x<)	f(t) = (Xi-Xrt)/sd	P'(x) = M/(n-1)	P'(x <)	D
1	2	3	4 = nilai 1-3	5	6	7= nilai 1-6	8 = 4-7
1	91	0,091	0,909	-1,366	0,111	0,889	0,020
2	90	0,182	0,818	-1,396	0,222	0,778	0,040
3	115	0,273	0,727	-0,650	0,333	0,667	0,061
4	193	0,364	0,636	1,677	0,444	0,556	0,081
5	135	0,455	0,545	-0,054	0,556	0,444	0,101
6	154	0,545	0,455	0,513	0,667	0,333	0,121
7	157,5	0,636	0,364	0,618	0,778	0,222	0,141
8	172	0,727	0,273	1,050	0,889	0,111	0,162
9	138,5	0,818	0,182	0,051	1,000	0,000	0,182
10	122	0,909	0,091	-0,442	1,111	-0,111	0,202
			Г)m ax			0.202

Sumber: Hasil Olah Data: 2020

6) Perhitungan Intensitas Hujan Rencana Tabel Intensitas Curah Hujan

	R2	4
t (jam)	R2	R5
	134,943	165,233
1	46,782	57,283
2	29,471	36,086
3	22,491	27,539
4	18,566	22,733
5	15,999	19,591
6	14,168	17,348
7	12,784	15,654
8	11,696	14,321
9	10,812	13,239
10	10,079	12,341
11	9,458	11,581
12	8,925	10,929
13	8,462	10,361
14	8,054	9,861
15	7,692	9,418
16	7,368	9,022
17	7,076	8,664
18	6,811	8,340
19	6,570	8,045
t (jam)	R2	R5
20	6,349	7,775
21	6,146	7,526
22	5,958	7,296
23	5,784	7,083
24	5,623	6,885

Sumber: Hasil Olah Data: 2020

Gambar Grafik Intensitas Curah Hujan

7) Waktu konsentrasi (tc)

Tabel Perhitungan Intensitas Curah Hujan untuk Saluran Drainase Sinrijala

Periode Ulang	R (mm)	tc (jam)	$I\;(mm/jam)$
T2	134,943	1,997	29,499
T5	165,233	1,997	36,120

Sumber: Hasil Olah Data: 2020

8) Perhitungan Debit Air Hujan Rencana Tabel Luas Koefisien Aliran

No	Jenis Tata Guna Lahan	Luas (m2)	Nilai C	A . C
1	multiunit terpisah	59820,53	0,40	333561,548
2	multiunit tergabung	647126,10	0,65	420631,965
3	industri kecil	41456,59	0,50	20728,295
4	bisnis perkotaan	4716,54	0,70	3301,578
5	lahan terbuka	32159,47	0,20	6431,894
6	jalan aspal	24175,64	0,85	20549,294
7	jalan paving block	16318,98	0,60	9791,388
8	industri besar	2322,13	0,90	2089,917
9	taman tempat bermain	5807,89	0,20	1161,578
	Total	833903,87		818247,457
			Cgab	0,981

Sumber : Hasil Olah Data : 2020

Tabel Debit Hujan pada Kawasan Drainase Sinrijala

No	Periode Ulang	I (mm/jam)	С	$A (m^2)$	Q Hujan (m³/det)
1	T2	29,499	0,981	833903,87	6,710
2	T5	36,120	0,981	833903,87	8,216

Sumber: Hasil Olah Data: 2020

9) Perhitungan Debit Air Kotor

Adapun besarnya kebutuhan air penduduk rata-rata adalah 150 liter/orang/hari. Sedangkan debit air kotor yang harus dibuang didalam saluran adalah 70% dari kebutuhan air bersih (Suhardiini, 1984:39).

Rumus:

$$Qak = \frac{PAQ}{A}$$

$$q = 150 \times 70\%$$

$$= 105 \text{ liter/orang/hari} = 0,00121$$

$$\text{liter/dtk/orang}$$

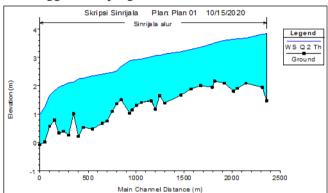
Total jumlah debit pada saluran adalah Qak = 2.088.

10) Debit KomulatifTabel Debit Kumulatif

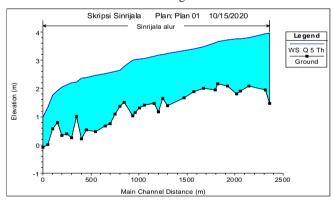
No	Periode Ulang	Q Hujan	Q Buangan	Q Banjir
INO	(Tahun)	(m3/det)	(m3/det)	(m3/det)
1	T2	6,710	2,088	8,798
2	T5	8,216	2,088	10,304

Sumber: Hasil Olah Data: 2020

D. Analisis Hidrolika


Berdasarkan data pengukuran memanjang (*long*) dan melintang (*cross*) yang telah didapatkan pada pengukuran lapangan, kemudian diinput ke dalam software HEC-RAS 4.1.0 untuk kemudian dilakuan pemodelan data geometri. Dalam menjalankan program HEC-RAS maka sebagai langkah awal adalah input data yang meliputi:

- a) Skema sistem sungai (*River System Schematic*)
- b) Data Penampang sungai (Cross Section Data)
- c) Jarak antar patok (*Left of Bank*/LOB, *Channel* dan *Right of Bank*/ROB)
- d) Parameter setiap data penampang yang terdiri dari kekasaran manning (n) dan 2 titik koordinat yang membentuk penampang utama (*Main Channel Bank Station*).


Data Aliran tetap meliputi : Kondisi Batas (Boundary Conditions).

Dalam analisa profil aliran ini akan dihitung dengan beberapa kondisi antara lain :

- 1) Kondisi muka air pada debit kala ulang 2 th (Q2)
- 2) Kondisi muka air pada debit kala ulang 5 th (Q5) Berikut hasil analisa profil muka air dengan menggunakan program HEC-RAS.

Gambar Profil Muka Air Drainase Sinrijala dengan Debit Kala Ulang 2 Tahun

Gambar Profil Muka Air Drainase Sinrijala dengan Debit Kala Ulang 5 Tahun

Berdasarkan hasil analisis hidrolika menggunakan aplikasi HEC-RAS diperoleh bahwa terdapat beberapa bagian pada eksisting drainase mempunyai muka air banjir melebihi kapasitas drainase.

- 1) Debit rancangan kala ulang 2 tahun
 - a) Pada P.28, P.29, P.30, dan P.34 air meluap pada tanggul sebelah kiri dan kanan karena memiliki

- elevasi banjir yang lebih tinggi dari pada elevasi tanggul kiri dan kanan.
- b) Pada P.24, P.25, P.26, P.32, dan P.33 air meluap pada tanggul sebelah kanan karena memiliki elevasi banjir yang lebih tinggi dari pada elevasi tanggul kanan.
- c) Pada P.16, P.17, P.18, P.19, P.20, P.21, P.22, P.28, P.29, P.30, dan P.34 tidak memenuhi syarat tinggi jagaan pada tanggul sebelah kiri dan kanan karena memiliki tinggi jagaan < 0,3 meter.
- d) Pada P.27 tidak memenuhi syarat tinggi jagaan pada tanggul sebelah kiri karena memiliki tinggi jagaan < 0,3 meter.
- e) Pada P.23, P.24, P.25, P.26, P.32, dan P.33 tidak memenuhi syarat tinggi jagaan pada tanggul sebelah kanan karena memiliki tinggi jagaan < 0,3 meter.
- f) Selain penampang yang telah disebutkan pada point a, b, c, d, dan e, memiliki elevasi tanggul yang lebih tinggi dari pada elevasi banjir kala ulang 2 dan 5tahun sehingga air tidak meluap. Selain itu, telah memenuhi syarat tinggi jagaan > 0,3 meter.

2) Debit rancangan kala ulang 5 tahun

- a) Pada P.21, P.28, P.29, P.30, dan P.34 air meluap pada tanggul sebelah kiri dan kanan karena memiliki elevasi banjir yang lebih tinggi dari pada elevasi tanggul kiri dan kanan.
- b) Pada P.22, P.23, P.24, P.25, P.25, P.32, dan P.33 air meluap pada tanggul sebelah kanan karena memiliki elevasi banjir yang lebih tinggi dari pada elevasi tanggul kanan.
- c) Pada P.27 air meluap pada tanggul sebelah kiri karena memiliki elevasi banjir yang lebih tinggi dari pada elevasi tanggul kiri.
- d) Pada P.16, P.17, P.18, P.19, P.20, P.21, P.22, P.23, P.24, P.25, P.26, P.27, P.28, P.29, P.30, P.33, dan P.34 tidak memenuhi syarat tinggi jagaan pada tanggul sebelah kiri dan kanan karena memiliki tinggi jagaan < 0,3 meter.
- e) Pada P.32 tidak memenuhi syarat tinggi jagaan pada tanggul sebelah kanan karena memiliki tinggi jagaan < 0,3 meter.
- f) Selain penampang yang telah disebutkan pada point a, b, c, d, dan e, memiliki elevasi tanggul yang lebih tinggi dari pada elevasi banjir kala ulang 2 dan 5 tahun sehingga air tidak meluap. Selain itu, telah memenuhi syarat tinggi jagaan > 0,3 meter.

E. Analisis Kinerja Operasi dan Pemeliharaan

1) Uji Kualitas Data

a) Uji Validasi

Tabel Hasil Uji Validasi

Kode	Variabel/Indikaor Variabel	R _{tabel}	Rhitung	Ket
X1	Aspek Pelayanan Operasi	1 tabel	10 hitung	Ket
X1.1	Bangunan pintu air	0,388	0.623	Valid
X1.2	Bangunan pengendali banjir atau pompa air	0,388	0,730	Valid
X1.3	Petugas pemantau operasi saluran drainase	0,388	0,661	Valid
X1.4	Petugas pemantau pada bangunan pintu air	0.388	0.689	Valid
X1.5	Petugas pemantau pada bangunan pengendali	0,388	0.632	Valid
	banjir	•		
X1.6	Trashrack pada setiap inlet dan outlet saluran	0,388	0,441	Valid
X1.7	Jalan inspeksi	0,388	0,715	Valid
X1.8	Arsip data	0,388	0,601	Valid
X2	Aspek Pemeliharaan			
X2.1	Pemeliharaan pada bangunan saluran	0,388	0,750	Valid
X2.2	Pemeliharaan pada bangunan penunjang dan	0,388	0,425	Valid
	pengendali banjir			
X2.3	Pemeliharaan rutin	0,388	0,458	Valid
X2.4	Pemeliharaan berkala	0,388	0,494	Valid
X2.5	Pemeliharaan khusus atau rehabilitasi	0,388	0,607	Valid
X2.6	Peralatan untuk pemeliharaan bangunan	0,388	0,753	Valid
	saluran			** ** *
X2.7	Sosialisasi kepada masyarakat	0,388	0,429	Valid
X3	Aspek Kondisi Lingkungan	0.200	0.670	771:2
X3.1	Daerah resapan air atau ruang terbuka hijau	0,388	0,678	Valid Valid
X3.2	Pemukim an dan tata guna lahan tertata baik	0,388	0,762	
X3.3 X3.4	Penyaringan air limbah Tidak membuang sampah rumah tangga	0,388	0,836	Valid Valid
A3.4	Tidak membuang sampah rumah tangga langsung ke saluran	0,388	0,456	v carica
X3.5	Bak kontrol pada setiap rumah tangga	0,388	0,536	Valid
X3.6	Tepi kanan dan kiri saluran terbebas dari	0,388	0,399	Valid
A3.0	bangunan liar	0,000	0,355	v caraca
X4	Aspek Fisik Bangunan			
X4.1	Inlet saluran bersih dari sampah dan	0,388	0,512	Valid
	sedimetasi	0,000	*,***	7 617161
X4.2	Tidak terjadi pendangkalan saluran akibat	0,388	0,507	Valid
	sedim entasi	•		
X4.3	Tidak terdapat banyak tumpukan sampah	0,388	0,608	Valid
	pada permukaan saluran			
X4.4	Tidak terdapat gulma atau tanaman enceng	0,388	0,538	Valid
	gondok pada permukaan saluran			
X4.5	Struktur dinding saluran dalam kondisi baik	0,388	0,444	Valid
	dan tidak terdapat retakan atau runtuhan			
X4.6	Saluran sekunder dan tersier terkoneksi baik	0,388	0,554	Valid
	denga saluran primer			
X4.7	Terdapat tangggul atau parapet di sepanjang	0,388	0,495	Valid
771.0	saluran drainase terutama pada daerah hilir	0.000	0.506	** ** *
X4.8	Railing di sepanjang bibir drainase	0,388	0,506	Valid
X5	Aspek Parti sipasi Instansi Terkait	0.200	0.725	771:2
X5.1	Struktur kelembagaan yang mengurusi	0,388	0,735	Valid
X5.2	penyelenggaraan OP drainase	0,388	0.907	Valid
AJ.2	Peraturan instansi terkait penyelenggaraan OP saluran drainase primer	٥٥ د, ٥	0,807	v cai tea
X5.3	Standar operasional prosedur (SOP)	0,388	0,773	Valid
	pelaksanaan OP saluran drainase	0,200	٠,	7 517 191
X6	Aspek Peran Serta Masyarakat			
X6.1	Masyarakat ikut serta dalam kegiatan	0,388	0,560	Valid
	sosialisasi terkait pemeliharaan saluran			
	drainase			
X6.2	Masyarakat aktif dalam pemeliharaan saluran	0,388	0,767	Valid
	drainase dengan idak membuang sampah			
	kedalam saluran			
X6.3	Masyarakt aktif dalam pelaksanaan	0,388	0,732	Valid
	pengoperasian saluran dengan tidak			
****	mengalih-fungsikan tepi-tepi saluran			** ** *
X6.4	Masyarakat aktif dalam kegiatan gotong	0,388	0,629	Valid
V6 5	royong / bersih-bersih saluran	0.200	0.500	777:7
X6.5	Masyarakat aktif dalam memberi laporan	0,588	0,580	Valid
Sumbor	genangan air : Hasil Olah Data : 2020			
o onnoer .	. I was Commercial . 2020			

b) Uji Reliabilitas

Tabel Hasil Uji Reliabilitas

Kode	Variabel	Nilai Alpha Analisa	Cronbach' s Alpha	Ket
X1	Aspek Pelayanan Operasi	0,600	0,783	Reliabel
X2	Aspek Pemeliharaan	0,600	0,623	Reliabel
X3	Aspek Kondisi Lingkungan	0,600	0,608	Reliabel
X4	Aspek Fisik Bangunan	0,600	0,603	Reliabel
X5	Aspek Partisipasi Instansi	0,600	0,662	Reliabel
	Terkait	_		
X6	Aspek Peran Serta	0,600	0,608	Reliabel
	Masyarakat			
Sumbe	r : Hasil Olah Data : 2020	-	•	

2) Uji Asumsi Klasik

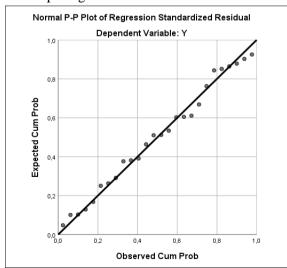
a) Uii Multikolinearitas

Tabel Hasil Uii Multikolinearitas

Kođe	V ari abel	Tolerance	VIF
X1	A spek Pelayanan Operasi	0,930	1,075
X2	A spek Pemelihara an	0,752	1,330
X3	Aspek Kondisi Lingkungan	0,813	1,231
X4	A spek Fisik B angunan	0,903	1,108
X5	Aspek Partisipasi Instansi Terkait	0,967	1,034
X6	Aspek Peran Serta Masyarakat	0,793	1,262

Sumber: Hasil Olah Data: 2020

b) Uii Heterokedastisitas


Tabel Hasil Uji Heterokedastisitas

Kode	Variabel	Batas Sig.	Nilai Sig.
X1	Aspek Pelayanan Operasi	0,05	0,596
X2	Aspek Pemeliharaan	0,05	0,725
X3	Aspek Kondisi Lingkungan	0,05	0,481
X4	Aspek Fisik Bangunan	0,05	0,715
X5	Aspek Partisipasi Instansi Terkait	0,05	0,168
X6	Aspek Peran Serta Masyarakat	0,05	0,745

Sumber: Hasil Olah Data: 2020

c) Uji Normalitas

Hasil uji normalitas dengan metode grafik P-P plot of regression standardized residual dapat dilihat pada gambar berikut.

Gambar Grafik P-P plot of regression standardized residual

3) Uji Hipotesis

a) Uji Persamaan Linear Berganda

Tabel Hasil Uji Regresi Linear Berganda

Kođe	Variabel	Unstandardized Coefficient		
Kode	Valiabei	В	Sd. Error	
Constant		-2,647	1,907	
X1	Aspek Pelayanan Operasi	0,046	0,029	
X2	Aspek Pemeliharaan	0,096	0,047	
X3	Aspek Kondisi Lingkungan	0,005	0,052	
X4	Aspek Fisik Bangunan	0,095	0,037	
X5	Aspek Partisipasi Instansi Terkait	-0,029	0,055	
X6	Aspek Peran Serta Masyarakat	0,050	0,074	

Sumber: Hasil Olah Data: 2020

Y = -2,647 + 0,046 X1 + 0,096 X2 + 0,005 X3 +0.095 X4 - 0.029 X5 + 0.050 X6

Keterangan:

Y = Kapasitas Drainase

X1 = Aspek Pelayanan Operasi

= Aspek Pemeliharaan X2

X3 = Aspek Kondisi Lingkungan

X4 = Aspek Fisik Bangunan

= Aspek Partisipasi Instansi Terkait X5

= Aspek Peran Serta Masyarakat X6

b) Uji t Parsial

Tabel Hasil Uji t Parsial

V ari abel	t _{tabe1}	thitung	Sig.
		-1,388	0,181
A spek Pel ayanan Operasi	2,093	1,573	0,132
A spek Pemeliharaan	2,093	2,068	0,052
Aspek Kondisi Lingkungan	2,093	0,100	0,921
A spek Fisik B angunan	2,093	2,544	0,020
A spek Partisipa si Instansi Terkait	2,093	-0,521	0,608
Aspek Peran Serta Masyarakat	2,093	0,669	0,512
	A spek Pelayanan Operasi A spek Pemeliharaan A spek Kondisi Lingkungan A spek Fisik B angunan A spek Partisipasi Instansi Terkait	Aspek Pelayanan Operasi 2,093 Aspek Pemeliharaan 2,093 Aspek Kondisi Lingkungan 2,093 Aspek Fisik B angunan 2,093 Aspek Partisipasi Instansi Terkait 2,093	Aspek Pelayanan Operasi 2,093 1,573

Sumber: Hasil Olah Data: 2020

c) Uii F Simultan

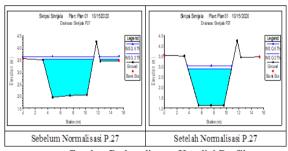
Tabel Hasil Uji F Simultan

	ANOVA ^a					
Model Sum of Squares			df	Mean Square	F	Sig.
1	Regression	3,235	6	,539	2,749	,043 ^b
	Residual	3,726	19	,196		
	Total	6,962	25			

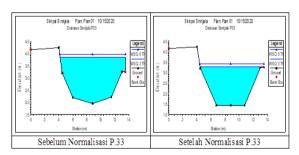
a. Dependent Variable: Y

b. Predictors: (Constant), Total_X6, Total_X5, Total_X1, Total_X3, Total_X4, Total_X2 Sumber: Hasil Olah Data: 2020

Berdasarkan tabel diatas menunjukkan nilai signifikansi sebesar 0,043 < 0,05 dan nilai F_{hitung} sebesar 2,749 > 2,60 menunjukkan bahwa semua variabel independen (variabel X) yakni pelayanan aspek operasi (X1),pemeliharaan (X2), aspek kondisi lingkungan (X3), aspek fisik bangunan (X4), aspek partifipasi instansi terkait (X5) dan aspek peran serta masyarakat (X6) berpengaruh signifikan secara simultan atau bersama-sama terhadap variabel dependen (variabel Y) yakni kapasitas drainase.

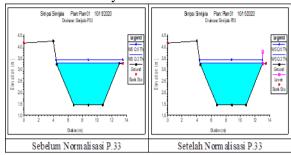

4) Aspek-aspek yang Berpengaruh Dominan

Dari kelima variabel yang memiliki nilai koefisien positif pada uji persamaan linear berganda, dapat ditentukan variabel yang dominan dengan melihat variabel yang berpengaruh secara signifikan pada hasil uji t parsial, dimana hasil uji tersebut menunjukkan variabel aspek fisik bangunan berpengaruh secara signifikan terhadap variabel dependent (Y). Sehingga variabel yang berpengaruh secara dominan dalam peningkatan kapasitas drainase yaitu variabel aspek fisik bangunan.

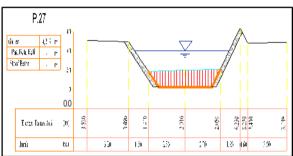

5) Upaya dalam Meningkatkan Kapasitas Drainase Sinrijala

Kondisi eksisting drainase Sinrijala saat ini memang memiliki beberapa permasalahan terutama pada fisik bangunannya. Kelandaian dasar saluran dan berkurangnya daya tampung saluran disebabkan oleh sedimentasi. Oleh karena itu dibutuhkan penanganan berupa kegiatan normalisasi berupa pengerukan dan penambahan tanggul.

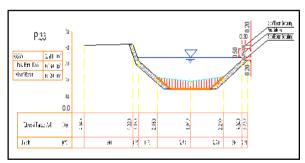
Untuk itu dilakukan simulasi pertama yaitu melakukan *running* kedua menggunakan aplikasi HEC-RAS 4.1.0 untuk analisis kapasitas dengan menambah kedalaman penampang saluran.



Gambar Perbandingan Kondisi Profil pada Patok P.30 Simulasi 1



Gambar Perbandingan Kondisi Profil pada Patok P.33 Simulasi 1


Setelah dilakukan simulasi pertama, ternyata masih terdapat beberapa penampang yang belum memenuhi syarat kapasitas tampung, sehingga dilakukan simulasi kedua yaitu penambahan tanggul kanan dan kiri pada penampang yang belum memenuhi syarat.

Hasil simulasi kedua menunjukkan elevasi tanggul lebih tinggi dari pada muka air banjir di semua penampang (P.0 – P.34). Selain itu, penampang juga telah memenuhi syarat tinggi jagaan. Sehingga kegiatan normalisasi berupa pengerukan dan penambahan tanggul telah menjadikan penampang mampu menampung debit banjir kala ulang 2 tahun dan 5 tahun.

Gambar Cross Section P.27 untuk Normalisasi

Gambar Cross Section P.33 untuk Normalisasi

6) Rekomendasi Pelaksanaan Operasi dan Pemeliharaan Drainase Sinrijala

Untuk menjaga kinerja fisik bangunan drainase, selain melakukan normalisasi berupa pengerukan sedimentasi dan penambahan tanggul, perlu pula dilakukan penanganan pada aspek yang lain yang berpegaruh secara simultan dalam upaya peningkatan kapasitas drainase Sinrijala. Berdasarkan hasil uji F simultan, menunjukkan bahwa keenam variabel berpengaruh secara simultan. Sehingga peningkatan kinerja pada semua variabel perlu dilakukan. Berikut adalah urutan prioritas untuk peningkatan kapasitas drainase Sinrijala beserta rekomendasi penanganannya.

a) Pengerukan Sedimentasi

Tabel Rekomendasi Kegiatan Pengerukan Sedimentasi

Uraian Kegiatan	Kondisi Faktual	Kebutuhan Pengelolaan	Konsep Pengel olaan
Penggalian/penge nukan sedimen dan sampah di dasar kanal	Banyaknya sedimen dan sampah yang terdekompo sisi di dasar kanal sehingga mengurangi kapasitas kanal.	dilakukan penanganan karena akan menyebabkan	Pengangkutan hasil galian sampah dan sedimen ke TPA atau tempat pembuangan akhir Operasi rutin pembersihan sampah di kanal untuk mencegah dekomposisi

b) Penambahan Tanggul

Tabel Rekomendasi Kegaiatan Penambahan Tanggul

Uraian Kegiatan	Kondisi Faktual	Kebutuhan Pengelolaan	Konsep Pengel olaan
Penambahan tanggul		penambahan tanggul pada titik-titik yang rentan. Untuk titik-titik lain penambahan tanggul belum menjadi prioritas	penambahan tanggul pada titik-titik yang rentan (P.29, P.30, P.33, daan P.34).
	I		

c) Dinding Saluran

Tabel Rekomendasi Kegiatan Perbaikan Dinding Saluran

Uraian Kegiatan	Kondisi Faktual	Kebutuhan Pengelolaan	Konsep Pengelolaan
Perbaikan Dinding Saluran	sampai berat berupa retakan	Perbaikan dinding saluran yang mengalami kerusakan berat menjadi prioritas utama untuk menghindari kerusakan yang lebih fatal. Sementara untuk kerusakan ringan belum menjadi prioritas utama melainkan jangka menengah dalam OP.	kebocoran tanggul perlu segera diatasi terutama pada tanggul dengan pasangan menghindari

d) Outlet Saluran

Tabel Rekomendasi Penanganan pada Outlet Saluran

I uc	or recitoring manner i	nanganan paa	a Catiet Baiaiai
Uraian Kegiatan	Kondisi Faktual	Kebutuhan Pengelolaan	Konsep Pengelolaan
utlet/salur 1 yang 1asuk ke anal	Sebanyak 63 outlet dari numah warga atau industri yang langsung masuk ke kanal.	atau outlet dari rumah	saluran/oulet dari rumah warga/industri yang langsung masuk
	Saluran atau outlet tersebut membuang langsung limbah/sampah dari rumah tangga dan industri ke kanal tampa melalui pengolahan terlebih dahulu.	sampah masuk ke	Memperbanyak jumlah IPAL di sekitar kanal.

e) Pemasangan Pompa Banjir

Tabel Rekomendasi Pemasangan Pompa Banjir

1 40011	Tue of Trene inches in a sun pur building			
Uraian Kegiatan	K ondisi Faktual	Kebutuhan Pengel olaan	K onsep Peng el olaan	
Pemasangan pompa banjir	Kundisi beberapa penampang saluran yang sudah tidak mampu menampung debit Q2 dan Q5, hal tersebut akan meningkatkan genangan pada titik-titik dengan elevasi rendah	banjir perlu dilakukan pada titik-titik yang rentan mengalami genangan dan pada	banjir bersifat pembangunan banusehingga perlu perencanaan lebih	

f) Pemasangan Trash Rack

Tabel Rekomendasi Pemasangan Trash Rack

Uraian Kegiatan	Kondisi Faktual	Kebutuhan Pengelolaan	Konsep Pengelolaan
Trashrack	Tidak terdapat trashrack diruas kanal, baik yang otomatis maupun manual.	diruas kanal ini perlu untuk dilakukan disamping untuk mengurangi beban trasrack otomatis di	Menyiapkan personil untuk pengoperasian trashrack Pengankatan sampah secara rutin di trashrack Penyusunan SOP tentang pengoperasian trashrack yang melibatkan BBWS-PJ dan
	Semua saluran sekunder tersier yang masuk ke kanal tidak dilengkapi dengan trashrack sehingga sampah apapun yang dibawa oleh air dari saluran tersebut semuanya masuk ke kanal.	di saluran sekunder dan tersier perlu dilakukan guna mengurangi volume sampah yang masuk	Pemasangan trashrack diakhir saluran sekunder atau tersier sebelum masuk ke kanal.

g) Pemasangan Railing/Pengaman

Tabel Rekomendasi Pemasangan Railing/Pengaman

		_	
Uraian Kegiatan	Kondisi Faktual	Kebutuhan Pengelolaan	Konsep Pengelolaan
Pengaman /Railing		Penanganan bersifat jangka menengah- panjang.	Pemasangan railing/pengaman pada ruas yang belum memiliki pengaman terutama didaerah pemukiman
	dan nuas lainnya dalam kondisi nusak		Jenis railing/pengaman sebaiknya menghindari bahan yang terbuat dari besi atau baja.

h) Perbaikan Jalan Inspeksi Tabel Rekomendasi Perbaikan Jalan Inspeksi

Uraian Kegiatan	Kondisi Faktual	Kebutuhan Pengelolaan	Konsep Peng el olaan
Jalan	Kondisi jalan inspeksi,	Perlu dilakukan	1) Penelusuran asset jalan-jalan
Inspeksi	dimana sebagian ruas kanal	penang anan	inspeksi yang telah
	tidak memiliki jalan inspkesi	penerti ban	dibebaskan oleh pemerintah
	(Jalan inspeksi yang ada	pemanfaatan ruas	2) Kajian dan studi tentang
	dimanfaatkan oleh warga	jalan inspeksi karena	penentuan sempadan jalan
	dengan membangun	jika dibiarkan	Kanal Sinrijala
	bangunan permanen dan semi	jumlah ruas jalan	3) Penentuan batas-batas jalan
	permanen. Beberapa ruas	inspeksi yang	inspeksi/sempadan kanal
	kanal lainnya memiliki jalan	dimanfaatkan warga	4) Penertiban bangunan-
	inspeksi dengan lebar yang	akan terus	bangunan yang berada di
	sangat terbatas 1-2 m (kurang	bertambah sehingga	jalankan inspeksi kanal
	dari 3 meter) sehingga sangat		5) Monitoring pemanfaatan
	menyulitkan dalam operasi		jalan inspeksi oleh
	dan pemeliharaan kanal.	OP kanal.	mas yarakat.

V. Penutup

A. Kesimpulan

Berdasarkan hasil penelitian yang dilakukan, maka diperoleh kesimpulan sebagai berikut :

- 1) Debit rencana yang dihasilkan pada drainase Sinrijala adalah Q2 = 8,798 m³/detik dan Q5 = 10,304 m³/detik. Dari hasil simulasi eksisting dengan Q 2 tahun diperoleh P.16, P.17, P.18, P.19, P.20, P.21, P.22, P.23, P.24, P.25, P.26, P.27, P.28, P.29, P.30, P.32, P.33, dan P.34 tidak memenuhi syarat kapasitas saluran, sementara untuk Q 5 tahun tidak memenuhi syarat kapasitas saluran pada P.16, P.17, P.18, P.19, P.20, P.21, P.22, P.23, P.24, P.25, P.26, P.27, P.28, P.28, P.29, P.30 P.32, P.33, dan P.34.
- Variabel Fisik Bangunan (X4) merupakan faktor berpengaruh dominan dalam peningkatan kapasitas Drainase Sinrijala, upaya dalam mengatasi permasalahan banjir dan genangan adalah melakukan normalisasi berupa pengerukan, penambahan tanggul dan perbaikan dinding saluran yang mengalami kerusakan berat menjadi prioritas utama untuk meningkatkan fisik bangunan drainase Sinrijala. Sementara itu, perbaikan dinding saluran untuk kerusakan ringan, pemeliharaan outlet saluran, pemasangan trashrack, pemasangan pompa banjir dan pemasangan pengaman/railing perlu pula dilakukan dalam jangka menengah dan panjang untuk meningkatkan kineri kapasitas drainase Sinrijala.

B. Saran

Adapun saran yang berkaitan dengan penelitian ini sebagai berikut :

1) Diharapkan penelitian ini dapat menjadi masukan-

- bagi pemerintah dan instansi untuk kegiatan operasi dan pemeliharaan dalam upaya peningkatan kapasitas drainase Sinrijala.
- 2) Dalam menganalisis pemodelan kinerja sebaiknya memperhitungkan pengaruh antar variabel X.
- 3) Diperlukan kajian lebih khusus dalam perencanaan teknis kegiatan operasi dan pemeliharaan, khususnya perencanaan *trash rack* dan pompa banjir.

Daftar Pustaka

- [1] Andana, Bayu; Arisanty, Deasy dan Adyatma Sidharta. 2016. Evaluasi Daya Tampung Sistem Drainase di Kecamatan Banjarmasin Selatan. Banjarmasin: Universitas Lambung Mangkurat.
- [2] Balai Besar Wilayah Sungai Pompengan Jeneberang. Peta Master Plan Drainase Kota Makassar. Makassar.
- [3] Ghozali, Imam. 22011. Aplikasi Analisis Multivariate dengan Program IBM SPSS 19. Semarang: Badan Penerbit Undip.
- [4] Kelinger, F. N. dan Lee, H. B. 2000. Foundation of Behavioral Research (Fourth Edition). USA: Holt, Reinnar & Winston, Inc.
- [5] Kodoatie, R. J. dan Sjarief, R. 2008. Pengelolaan Sumber Daya Air Terpadu. Andi Offset. Jakarta.
- [6] Lestari Jufrian, Mega dan Ardiansyah. 2019. Analisis Kinerja Drainase Jalan Pacerakang Kota Makassar. Makassar : Politeknik Negeri Ujung Pandang.
- [7] Menteri Pekerjaan Umum Republik Indonesia. 2014. Peraturan Menteri Pekerjaan Umum Republik Indonesia Nomor 12/PRT/M/2014 tentang Penyelenggaraan Sistem Drainase Perkotaan. Jakarta.
- [8] Mursitaningsih.2009. Analisis Kinerja Saluran Drainase Di Daerah Tangkapan Air Hujan Sepanjang Kali Pepe Kota Surakarta. Bandung: Institut Teknolofi Bandung.
- [9] Priyo Hutomo, Fajar dan Firmansyah, Rheza. 2016. Analisis Hidrologi dan Kapasitas Sistem Drainase Kota Surakarta. Semarang: Universitas Negeri Semarang.
- [10] Restiani, Esi dan Sabri, Fadillah. 2015. Analisis Kinerja Sistem Drainase Keluarahan Kutp Panji Kecamatan Belinyu. (Online), (https://www.neliti.com/publications/61267/analisis-kinerjasistem-drainase-kelurahan-kuto-panji-kecamatan-belinyu). Bangka Belitung: Universitas Bangka Belitung.
- [11] Suhardjono. 1984. Drainase. Malang: Universitas Brawijaya.
- [12] Sujarweni, V.Wiratna. 2014. SPSS untuk Penelitian. Yogyakarta : Pustaka Baru Press.
- [13] Suripin.2004.Sistem Drainase Perkotaan yang Berkelanjutan. Penerbit ANDI.Yogyakarta.
- [14] Sitepu. 2019. Simulasi Morfologi Dasar Sungai Way Sekampung Menggunakan Software HEC-RAS. Lampung: Universitas Lampung.
- [15] Trisno Saputro, Danang; Ismoyo, M. Janu dan Hadi Wicaksono, Prima. Perencanaan Drainase Perkotaan di Kota Nanga Bulik Kabupaten Lamandau Provinsi Kalimantan Tengah. Malang: Universitas Brawijaya.
- [16] Vigiyanto, Antok. *Analisis Normalisasi Saluran Drainase Kecamatan Kota Di Kabupaten Tuban*. Surabaya: Universitas Negeri Surabaya.
- [17] Yuswar.2015. Analisis Pengelolaan dan Pemeliharaan Drainase Kota Banda Aceh Secara Terpadu, (Online), (https://etd.unsyiah.ac.id/baca/index.php?id=13486&page=6). Banda Aceh: Universitas Syiah Kuala.