
INTEK Jurnal Penelitian

Vol. 9, No. 2, pp. 98-104, Oktober 2022 98

DOI : http://dx.doi.org/10.31963/intek.v9i2.3350

Brute-force Detection Using Ensemble Classification

Abstract—Traditional brute-force is a dictionary-based attack

that tries to unlock an authentication process in service. This type

of brute force can be applied in web and SSH services, and brute-

force XSS injects JavaScript code. In this paper, we explore four

types of ensemble classifiers using CIC-CSE-IDS 2018 to

determine which yields the highest accuracy, recall, precision, and

F1 in detecting three types of brute force. The first step of the

research is to normalise the dataset with the tanH operator. The

second step is to train the single classifier to determine three types

of single classifiers combined as ensemble classifiers. The last step

is predicting and comparing the results of four ensemble

classifiers. The stacking algorithm achieves the best test result that

reaches 94.87%, 99.94%, 98.82%, and 99.37% for accuracy,

precision, recall, and F1, respectively.

Index Terms—brute-force; ensemble classifier; SMOTE

I. Introduction

A brute force has various ways to manifest itself. The

Open Web Application Project (OWASP) describes that

an attacker may use a dictionary attack (with or without

mutation) or a traditional brute-force attack (with given

classes of characters, e.g., alphanumeric case

(in)sensitive). However, the attacker has a predetermined

value, like a dictionary consisting of words obtained from

various sources, like a content management system or

software such as dirBuster. Considering a given method,

the number of tries, the efficiency of the system which

conducts the attack, and the estimated efficiency of the

attacked system can calculate how long it will take to

submit all chosen predetermined values.

The secure shell (SSH) is a cheap, software-based

solution for keeping prying eyes away from the data on a

network. The SSH protocols cover authentication,

encryption, and the integrity of data transmitted over the

network. The system administrator or developer uses SSH

features to do secure logins, file copying, and secure

invocation of remote commands on a remote host [1].

SSH Brute force attacks try to access a remote cloud

service or machine by performing an authentication

attempt on a remote machine. The process continues until

the username and password are matched. The attacker

would use an application, such as hydra, for this process.

The other type of brute force which uses the exact

mechanism is a web-targeted brute force attack.

XSS (Cross-Site Scripting) Brute force is another type

of brute force that inject code into a computer. This code

can get users’ personal information and send it back to the

attacker. There are two types of XSS brute force.

Persistent XSS brute force can be done by writing a script

designed to run when a user visits the injected page and

sends the information taken from the victim’s computer

to the attacker’s server [2]. Non-persistent XSS brute

force is usually done by sending the victim an unalarming

message through their email or a regular website. Suppose

the user clicks the link inside these messages to execute

the script.

The Kaspersky report in 2021 shows that brute force

attack is the highest initial attack vector with the variation

of attack duration between hours and months, followed by

vulnerability attacks and malicious email [3]. This initial

attack vector is followed by ransomware, which has the

highest impact, data leakage, and money theft. In the same

study, Kaspersky also found that 51% of attack detection

is done after the attack was started, and remediation

duration is done in weeks or months, representing 37% of

the total remediation duration category.

Many developments have been made in machine

learning applications to detect brute force attacks in recent

years. To improve the detection rate before an attack, a

machine learning technique was used to help detect the

initial attack vector. This paper used CIC-CSE-IDS 2018

as a dataset and standard single classifier methods such as

decision trees, naive Bayes, random forest, support vector

 Ekky Kharismadhany 1,*,a , Maretha Ruswiansari 1,*,b , Tri Harsono 1,c

1 Computer Engineering Major, PENS, Surabaya, Indonesia
a kharisma1770@ce.student.pens.ac.id, bmaretha@pens.ac.id, ctrison@pens.ac.id

INTEK Jurnal Penelitian

Vol. 9, No. 2, pp. 98-104, Oktober 2022 99

DOI : http://dx.doi.org/10.31963/intek.v9i2.3350

machine, and KNN. By combining three single classifier

methods, this paper combined these methods into four

ensemble classifier methods, majority voting, bagging,

stacking, and boosting. This paper compared the results

of these ensemble classifiers.

II. Research Methodology

A. Proposed Approach

The development approach to making a machine

learning model was consisted of four phases. The four

phases were dataset preparation, feature engineering,

ensemble classifier training, and classification metric.

The pre-processing data stage consists of invalid and

empty data removal, feature normalization, and feature

selection on the dataset. This study used two feature

selection methods, chi-square, and Spearman correlation.

Because of the dataset had imbalanced target class

frequency, this study used SMOTE technique to balance

the frequency. The goal of this phase was to prepare

datasets for further processing. In the data training phase,

common single classifier methods such as decision tree,

support vector machine, naive Bayes, and random forest.

This study compared these methods’ metrics, choosed the

three best methods, and combined these three methods to

make an ensemble classifier. This study used four

ensemble classifier methods: majority voting, bagging,

stacking, and boosting for the ensemble classifier method.

The last phase of the proposed approach was to test the

model. This study used four metrics, accuracy, recall,

precision and F1. These metrics used to determine the

model’s performance to detect brute force.

B. Experiment Procedure

1. Dataset Preparation

This study uses CSE-CIC-IDS 2018 dataset to build the

model. This dataset was a collaborative project conducted

by Communication Security Establishment and the

Canadian Institute of Cybersecurity. The dataset had 77

features and 11 types of network activity [8]. Table 1

shows each network activity type’s percentage and the

total number of rows. As shown in the table, the dataset

has an imbalanced network type, with 77.55% of the

dataset having a benign network type, and the smallest is

SQL injection with 0.001% parts of the dataset.

Table 1. The Percentage and Total Dataset’s Features Label

NO TYPE PERCETAGE TOTAL

1 Benign 77.55% 4883142

2 DDOS attack-HOIC 10.93% 686012

3 Bot 4.56% 286191

4 FTP-Brute force 3.08% 193360

5 SSH-Brute force 2.98% 187589

6 DoS attacks-GoldenEye 0.66% 41508

7 DoS attacks-Slowloris 0.17% 10990

8 DDOS attack-LOIC-UDP 0.27% 1730

9 Brute Force -Web 0.009% 611

10 Brute Force - XSS 0.003% 230

11 SQL Injection 0.001% 87

Before the dataset can be processed further, this study

checks its property for invalid values such as infinity and

NaN values. This action was needed to ensure the

program did not crash when it encountered these values.

This research split the dataset into two parts: training and

testing set. The training set had 80% of the total dataset,

and the rest of the dataset was allocated to the testing set.

2. Feature Engineering

As shown in Table 1, the dataset is imbalanced. This study

used the synthetic minority over-sampling technique

(SMOTE) to balance the dataset. SMOTE is a dataset

manipulation technique which under samples the majority

class and oversamples the minority class. This technique

uses a k-nearest neighbour algorithm to generate data

rows of the minority class synthetically. This study

assumed a class was a minority if the class has less than

100.000 rows. The usage goals of SMOTE was to

improve the classifier’s performance, as shown in

Ramezankhani A. and Azizi F.’s study [9,10].

This study used the tanH operator to scale the dataset into

0 – 1 range values. TanH operator has been reported by

Nandakumar, Ross, and Jain in Thangasamy S. and Latha

L. studies has robust and efficient performance [11].

�′� = �
� ∗ �	
�ℎ

.�∗������
��� + 1� (1)

INTEK Jurnal Penelitian

Vol. 9, No. 2, pp. 98-104, Oktober 2022 100

DOI : http://dx.doi.org/10.31963/intek.v9i2.3350

Where S’k is the product of the operation, the μ and σ are

the row’s mean and standard deviation respectively. As

the dataset has many features, this study used features

selection techniques such as chi-square and Spearman

correlation techniques to reduce the number of features.

This feature selection technique was also implemented in

Fitni, Q.R.S and Ramli K, showing that chi-square has

faster learning time and Spearman correlation has higher

learning metric results [12].

3. Ensemble Classifier

The processed data set was used to train a single classifier.

There were five single classifiers used in this study. The

five single classifiers were decision tree, support vector

machine, k-nearest neighbour, naive Bayes, and random

forest. The four single classifiers were trained using a

dataset that had been processed using Spearman and chi-

square techniques. The training results of the single

classifiers were compared to get the three single

classifiers that have the best performance metrics. The

feature selection technique that yields the highest metric

was also used for ensemble classifiers training. The three

best single classifiers were made into ensemble

classifiers. This study used four ensemble classification

algorithms: majority voting, boosting, bagging, and

stacking.

4. Classification Metrics

This study used common metric to determine the

performance of the model. These metrics were the

following:

 Accuracy

The percentage of samples which correctly classified

compared to total samples.

�����
�� = �� �!
�� �! "� "! (2)

 Recall

The proportion of all x categories samples that eventually

correctly classified as x categories. This metric reflects

the ability of the classifier to detect anomalies.

#$�
%% = ��
�� "! (3)

 Precision

The ratio between correctly classified categories and

falsely classified categories.

&�$�'(')� = ��
�� "� (4)

 F1

The F1 score is a ratio between recall and precision. F1

metric also shows the relationship between false positives

and false negatives observed in the experiment.

*1 = �∗+,-./0/12∗,-.344
+,-./0/12 ,-.344 (5)

 Area Under Curve Test

The metric is a probabilistic curve between the true

positive rate and false positive rate at some threshold

value. This metric also shows how machine learning

differentiates the classification target class. The

interpretation of the area under curve graph is as follows:

o The average value of sensitivity for all possible

values of specificity

o The average value of specificity for each possible

value of sensitivity.

 Data Retention Test

The application would be tested on how the application

can handle the data sent by the sniffer. The formula used

for the testing:

5
	
#$	$�	')� = �16347363�38-9
�16347363�-26 ∗ 100% (6)

III. Results and Discussion

This study used kaggle online environment in the

experiment. The python programming language was used

alongside sklearn, NumPy, and pandas library.

A. Dataset Preparation
The CSE-CIC-IDS 2018 dataset contained packet capture

(pcap), logs, labels, and the comma-separated-value

(CSV) files from the dataset’s source. The normal

(benign) and attack- type network activity was distributed

INTEK Jurnal Penelitian

Vol. 9, No. 2, pp. 98-104, Oktober 2022 101

DOI : http://dx.doi.org/10.31963/intek.v9i2.3350

inside several CSV files. This study used CSV files to

train and test the model. Inside the dataset, this study

found that some missing and infinite-value columns need

to be deleted. This removal goal was to avoid the program

throwing an error. Table 2 shows the amount of infinite-

value and missing-value inside the dataset.

Table 2. Missing and Infinity Values

Data Type Total

Missing Value 17079

Infinity Value 20280

The dataset was applied to the label encoding operation.

The label encoding operation was an operation that was

used to change a categorical feature into a numerical

feature. This study applied this operation to the ‘Label’

feature. As the feature has 11 unique values, this study

also maps it into 11 different integer values. Table 3

shows the categorical feature with its corresponding

integer value.

Table 3. Categorical Value Mapping to Numerical Mapping

Category Numerical

Benign 1

DDOS attack-HOIC 2

Bot 3

 FTP-Brute force 4

SSH-Brute force 5

 DoS attacks-GoldenEye 6

 DoS attacks-Slowloris 7

 DDOS attack-LOIC-UDP 8

Brute Force -Web 9

 Brute Force - XSS 10

 SQL Injection 11

B. Feature Engineering

The cleansed dataset will be a subject of the feature

engineering process. The feature engineering process

aimed to scale and reduce features inside the dataset. The

dataset features were selected with two methods, chi-

square and Spearman’s coefficient ranking correlation.

Chi-square’s test of independence used two hypotheses to

determine which features have a strong relationship with

label features. The following hypothesis was used to

determine the connection between the tested and response

features:

 H0 = tested feature is connected to response

feature

 H1 = tested feature is not connected to response

feature

The hypothesis was tested using an alpha value of 95%.

If the test failed to reject the null hypothesis, the

corresponding feature would be deleted from the dataset.

Ten features were considered duplicates of other features;

thus, those were deleted from the training and testing set.

Table 4 shows ten features that are deleted from the

training and testing set:

Table 4. The Removed Feature from Dataset Using Chi-Square

Technique

No Feature Name No Feature Name

1 Bwd Blk Rate Avg 6 CWE Flag Count

2 Bwd Byts/b Avg 7 Fwd Blk Rate Avg

3 Bwd PSH Flags 8 Fwd Byts/b Avg

4 Bwd Pkts/b Avg 9 Fwd Pkts/b Avg

5 Bwd URG Flags 10 Fwd URG Flag

Spearman correlation ranking selected highly correlated

features. This study deleted features with robust

correlation based on features’ correlation coefficient.

Table 5 shows the coefficient value and its corresponding

description.

Table 5. Spearman Coefficient and Description

No Value Description

1 0.0 – 0.19 Very Weak

2 0.2 – 0.39 Weak

3 0.4 – 0.59 Medium

4 0.6 – 0.79 Strong

5 0.8 – 1.0 Very Strong

There are 45 features deleted from the training and testing

set by using spearman correlation ranking correlation.

C. Ensemble Classifier Training and Metric Evaluation

 This study compareed the average results metrics of

five single classifier, to determine which feature selection

techniques to use for ensemble classifier training. As a

INTEK Jurnal Penelitian

Vol. 9, No. 2, pp. 98-104, Oktober 2022 102

DOI : http://dx.doi.org/10.31963/intek.v9i2.3350

reference, this study also included the average results

metrics trained with the data without feature selection.

Table 6 shows the average metric value for each single

classifier algorithm.

Table 6. The Comparison of Single Classifier Metrics

Algorithm No Feature

Selection

Chi Square Spearman

Decision Tree 97.17% 100% 96.61%

Naive Bayes 34.12% 33.98% 61.07%

SVM 76.60% 78.94% 78.99%

Random Forest 97.77% 97.82% 97.77%

KNN 98% 99.94% 98.82%

The chi-square performs well, with the highest being

100% average performance metric using the decision tree

classifier. Other classifiers such as support vector

machine, random forest, and k-nearest neighbour also

perform better when the training data was being processed

with chi-square feature selection. The only exception was

naive Bayes with 61.07% while using Spearman feature

selection.

The ensemble classifier training and evaluation phase

used the chi-square feature selection technique, decision

tree, random forest, and KNN as single classifier

components. Four ensemble classifier algorithms were

evaluated to determine which algorithms have the highest

metrics. Table 7 shows the frequency of each target label

inside the processed database.

 Table 8 shows brute force average detection metrics

for each ensemble classifier. The stacking ensemble

algorithm had the highest average metric with 94.87%,

99.94%, 98.82%, and 99.37% in accuracy, precision,

recall, and F1, respectively. This metric showed that the

stacking ensemble algorithm de- livers accurate results

and that most of the predicted class was correctly

predicted. Other ensemble classifier algorithms such as

majority boosting, boosting, and bagging were also

perform well, with an average metric around 95%.

Table 7. Categorical Feature to Numerical Mapping

No Category Training Set Testing Set

1 Benign 80020 19980

2 FTP-Brute Force 80104 19896

3 SSH-Brute Force 80127 19873

4 DdoS Attack-HOIC 79763 20237

5 Bot 80120 19880

6 DoS Attack -GoldenEye 80033 19967

7 DoS Attack-Slowloris 80004 19996

8 DdoS attack LOIC-UDP 79934 20066

9 Bruteforce - Web 80034 19966

10 Bruteforce - XSS 79835 20165

11 SQL Injection 80026 19974

Table 8. The Ensemble Classifier Metric’s Result Chi Square

Technique

Algorithm Accuracy Precision Recall F1

Majority

Voting

97.17% 94.76% 94.94% 94.84%

Boosting 93.33% 95.67% 92.23% 94.49%

Bagging 94.60% 94.80% 94.63% 94.7%

Stacking 94.87% 99.94% 98.82% 99.37%

 The area under curve test conducted to determine

stacking algorithm’s capability to separate each label

correctly. Figure 1 shows area under curve test result of

stacking algorithm.

Figure 1. Area Under Curve Test Result

INTEK Jurnal Penelitian

Vol. 9, No. 2, pp. 98-104, Oktober 2022 103

DOI : http://dx.doi.org/10.31963/intek.v9i2.3350

Figure 1 shows that Area Under Curve result reaching ~1 or

100%. This shows that model capability to separate each label

is good.

Data retention test was conducted by sending sniffed

data from application sniffer. The data sent to a message

broker (Apache Kafka) and consumed by the web server.

Then, the data received by the web server. The following

is total data being sent from application sniffer:

Figure 2. Total Data Sent by Application Sniffer

Figure 3. Total Data Saved in Database

 Figure 2 shows that there are 146 data are being

publish to Apache Kafka. From the Apache Kafka, the

data were consumed by the web service and saved into its

database. This is the total data successfully saved into the

database. Figure 3 shows that 123 data rows being saved

by database. Thus, the retention rate calculated with (5)

formula is:

5
	
#$	$�	')� = 123146 ∗ 100% = 84.24%

 The application also had feature to show the

approximate location of the source and destination IP

address as shown at figure 4. Figure 4 shows that the

destination IP was from Surabaya Indonesia and

Destination IP was from Maine, United States of

America.

Figure 4. The Approximate Location of the Source and

Destination IP Address

 Stacking algorithm was also tested against other

dataset which usually used to train model related to cyber-

attack. The study uses NSL-KDD dataset to verify the

robustness of the proposed study. Table 9 shows the

training and testing set used to train and test the stacking

model.

Table 9. Training and Testing Set (NSL KDD)

Name Total

Training Set 13600

Testing Set 3400

Before the training set used to train the model, it will

process through chi-square technique and its value would

be normalized using tanH operator. Table 10 shows the

performance result of stacking algorithm trained with

NSL KDD dataset.

Table 10. The Performance Result of Stacking Algorithm Trained

with NSL-KDD Dataset

Algorithm Accuracy Precision Recall F1

Stacking 99.2% 97.61% 98.59% 98.09%

Table 10 shows that although stacking algorithm trained

with other dataset, it retained its robustness by 99.2%,

97,61%, 98.59%, and 98.08% in accuracy, precision,

recall, and F1, respectively.

IV. Conclusion

1. Feature selection technique such as chi-square and

spearman can be used to reduce dataset dimension.

INTEK Jurnal Penelitian

Vol. 9, No. 2, pp. 98-104, Oktober 2022 104

DOI : http://dx.doi.org/10.31963/intek.v9i2.3350

2. The process of building machine learning model

comprised in several steps, such as data normalization

using tanH operator, and train, of each of single classifier

was using sklearn library. From the training, the decision

tree algorithm reached the highest metric score with 100%

and 99.61% average using chi-square and spearman

technique respectively.

3. The performance of an ensemble classifier is reliant on

the performance of its individual classifiers. For instance,

the stacking algorithm's performance may be inferior to

that of a decision tree due to the impact of other individual

classifiers on the prediction process.

4. The quantity comparison between two study showed

that stacking algorithm was outperforming the other

studies by 2 – 10%.

5. The area under curve test showed that stacking

algorithm can separate each of label class accurately with

the 99.16% score.

References

[1] D. Barrett, R. Silverman and R. Byrnes, SSH, the secure shell.

Sebastopol, CA: O’Reilly Media, Inc., 2011.
[2] P. Hope and B. Walther, Web Security Testing Cookbook:

Systematic Techniques to Find Problems Fast, 1st ed. Sebastopol,
CA: O’Reilly Media, 2008.

[3] Incident Response Analyst Report”,
media.kasperskycontenthub.com, 2022. [Online]. Available:
https://media.kasperskycontenthub.com/wp-
content/uploads/sites/43/2021/09/13085018/Incident-Response-
Analyst-Report-eng-2021.pdf. [Accessed: 11- Jun- 2022].

[4] J. Luxemburk, K. Hynek and T. Čejka,” Detection of HTTPS
Brute-Force Attacks with Packet-Level Feature Set,” 2021 IEEE
11th Annual Computing and Communication Workshop and
Conference (CCWC), 2021, pp. 0114-0122, doi:
10.1109/CCWC51732.2021.9375998.

[5] S. Wanjau, G. Wambugu and G. Kamau,” SSH-Brute Force
Attack Detection Model based on Deep Learning”, International
Journal of Computer Applications Technology and Research, vol.
10, no. 01, pp. 42-50, 2021. Available: 10.7753/ijcatr1001.1008
[Accessed 11 June 2022].

[6] M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya and
R. Zuech,” Machine Learning for Detecting Brute Force Attacks
at the Network Level,” 2014 IEEE International Conference on
Bioinformatics and Bioengineering, 2014, pp. 379-385, doi:
10.1109/BIBE.2014.73.

[7] ” IDS 2018 — Datasets — Research — Canadian Institute for
Cybersecurity — UNB”, Unb.ca, 2022. [Online]. Available:
https://www.unb.ca/cic/datasets/ids-2018.html. [Accessed: 17
May- 2022].

[8] A. Ramezankhani, O. Pournik, J. Shahrabi, F. Azizi, F. Hadaegh
and D. Khalili,” The Impact of Oversampling with SMOTE on the
Performance of 3 Classifiers in Prediction of Type 2 Diabetes”,
Medical Decision Making, vol. 36, no. 1, pp. 137-144, 2014.
Available: 10.1177/0272989x14560647.

[9] M. D. Hossain, H. Ochiai, F. Doudou and Y. Kadobayashi,” SSH
and FTP brute-force Attacks Detection in Computer Networks:
LSTM and Machine Learning Approaches,” 2020 5th
International Conference on Computer and Communication
Systems (ICCCS), 2020, pp. 491-497, doi:
10.1109/ICCCS49078.2020.9118459.

[10] N. Chawla, K. Bowyer, L. Hall and W. Kegelmeyer,” SMOTE:
Synthetic Minority Over-sampling Technique”, Journal of
Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.
Available: 10.1613/jair.953.

[11] A. Jain, K. Nandakumar and A. Ross,” Score normalization in
multimodal biometric systems”, Pattern Recognition, vol. 38, no.
12, pp. 2270-2285, 2005. Available:
10.1016/j.patcog.2005.01.012.

[12] Q. R. S. Fitni and K. Ramli,” Implementation of Ensemble
Learning and Feature Selection for Performance Improvements
in Anomaly-Based Intrusion Detection Systems,” 2020 IEEE
International Conference on Industry 4.0, Artificial Intelligence,
and Communications Technology (IAICT), 2020, pp. 118-124,
doi: 10.1109/IAICT50021.2020.9172014.

