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Brute-force Detection Using Ensemble Classification 
 

 

 
Abstract—Traditional brute-force is a dictionary-based attack 

that tries to unlock an authentication process in service. This type 

of brute force can be applied in web and SSH services, and brute-

force XSS injects JavaScript code. In this paper, we explore four 

types of ensemble classifiers using CIC-CSE-IDS 2018 to 

determine which yields the highest accuracy, recall, precision, and 

F1 in detecting three types of brute force. The first step of the 

research is to normalise the dataset with the tanH operator. The 

second step is to train the single classifier to determine three types 

of single classifiers combined as ensemble classifiers. The last step 

is predicting and comparing the results of four ensemble 

classifiers. The stacking algorithm achieves the best test result that 

reaches 94.87%, 99.94%, 98.82%, and 99.37% for accuracy, 

precision, recall, and F1, respectively. 

Index Terms—brute-force; ensemble classifier; SMOTE 

I. Introduction 

A brute force has various ways to manifest itself. The 

Open Web Application Project (OWASP) describes that 

an attacker may use a dictionary attack (with or without 

mutation) or a traditional brute-force attack (with given 

classes of characters, e.g., alphanumeric case 

(in)sensitive). However, the attacker has a predetermined 

value, like a dictionary consisting of words obtained from 

various sources, like a content management system or 

software such as dirBuster. Considering a given method, 

the number of tries, the efficiency of the system which 

conducts the attack, and the estimated efficiency of the 

attacked system can calculate how long it will take to 

submit all chosen predetermined values. 

The secure shell (SSH) is a cheap, software-based 

solution for keeping prying eyes away from the data on a 

network. The SSH protocols cover authentication, 

encryption, and the integrity of data transmitted over the 

network. The system administrator or developer uses SSH 

features to do secure logins, file copying, and secure 

invocation of remote commands on a remote host [1]. 

SSH Brute force attacks try to access a remote cloud 

service or machine by performing an authentication 

attempt on a remote machine. The process continues until 

the username and password are matched. The attacker 

would use an application, such as hydra, for this process. 

The other type of brute force which uses the exact 

mechanism is a web-targeted brute force attack. 

XSS (Cross-Site Scripting) Brute force is another type 

of brute force that inject code into a computer. This code 

can get users’ personal information and send it back to the 

attacker. There are two types of XSS brute force. 

Persistent XSS brute force can be done by writing a script 

designed to run when a user visits the injected page and 

sends the information taken from the victim’s computer 

to the attacker’s server [2]. Non-persistent XSS brute 

force is usually done by sending the victim an unalarming 

message through their email or a regular website. Suppose 

the user clicks the link inside these messages to execute 

the script.  

The Kaspersky report in 2021 shows that brute force 

attack is the highest initial attack vector with the variation 

of attack duration between hours and months, followed by 

vulnerability attacks and malicious email [3]. This initial 

attack vector is followed by ransomware, which has the 

highest impact, data leakage, and money theft. In the same 

study, Kaspersky also found that 51% of attack detection 

is done after the attack was started, and remediation 

duration is done in weeks or months, representing 37% of 

the total remediation duration category.  

Many developments have been made in machine 

learning applications to detect brute force attacks in recent 

years. To improve the detection rate before an attack, a 

machine learning technique was used to help detect the 

initial attack vector. This paper used CIC-CSE-IDS 2018 

as a dataset and standard single classifier methods such as 

decision trees, naive Bayes, random forest, support vector 
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machine, and KNN. By combining three single classifier 

methods, this paper combined these methods into four 

ensemble classifier methods, majority voting, bagging, 

stacking, and boosting. This paper compared the results 

of these ensemble classifiers.  

II. Research Methodology 

A. Proposed Approach 

The development approach to making a machine 

learning model was consisted of four phases. The four 

phases were dataset preparation, feature engineering, 

ensemble classifier training, and classification metric. 

The pre-processing data stage consists of invalid and 

empty data removal, feature normalization, and feature 

selection on the dataset. This study used two feature 

selection methods, chi-square, and Spearman correlation. 

Because of the dataset had imbalanced target class 

frequency, this study used SMOTE technique to balance 

the frequency. The goal of this phase was to prepare 

datasets for further processing. In the data training phase, 

common single classifier methods such as decision tree, 

support vector machine, naive Bayes, and random forest. 

This study compared these methods’ metrics, choosed the 

three best methods, and combined these three methods to 

make an ensemble classifier. This study used four 

ensemble classifier methods: majority voting, bagging, 

stacking, and boosting for the ensemble classifier method. 

The last phase of the proposed approach was to test the 

model. This study used four metrics, accuracy, recall, 

precision and F1. These metrics used to determine the 

model’s performance to detect brute force. 

B. Experiment Procedure 

1. Dataset Preparation 

This study uses CSE-CIC-IDS 2018 dataset to build the 

model. This dataset was a collaborative project conducted 

by Communication Security Establishment and the 

Canadian Institute of Cybersecurity. The dataset had 77 

features and 11 types of network activity [8]. Table 1 

shows each network activity type’s percentage and the 

total number of rows. As shown in the table, the dataset 

has an imbalanced network type, with 77.55% of the 

dataset having a benign network type, and the smallest is 

SQL injection with 0.001% parts of the dataset. 

Table 1. The Percentage and Total Dataset’s Features Label 

NO TYPE PERCETAGE TOTAL 

1 Benign 77.55% 4883142 

2 DDOS attack-HOIC 10.93% 686012 

3 Bot 4.56% 286191 

4  FTP-Brute force  3.08% 193360 

5 SSH-Brute force  2.98% 187589 

6  DoS attacks-GoldenEye  0.66% 41508 

7  DoS attacks-Slowloris  0.17% 10990 

8  DDOS attack-LOIC-UDP  0.27% 1730 

9 Brute Force -Web 0.009% 611 

10  Brute Force - XSS  0.003% 230 

11  SQL Injection  0.001% 87 

Before the dataset can be processed further, this study 

checks its property for invalid values such as infinity and 

NaN values. This action was needed to ensure the 

program did not crash when it encountered these values. 

This research split the dataset into two parts: training and 

testing set. The training set had 80% of the total dataset, 

and the rest of the dataset was allocated to the testing set. 

2. Feature Engineering 

As shown in Table 1, the dataset is imbalanced. This study 

used the synthetic minority over-sampling technique 

(SMOTE) to balance the dataset. SMOTE is a dataset 

manipulation technique which under samples the majority 

class and oversamples the minority class. This technique 

uses a k-nearest neighbour algorithm to generate data 

rows of the minority class synthetically. This study 

assumed a class was a minority if the class has less than 

100.000 rows. The usage goals of SMOTE was to 

improve the classifier’s performance, as shown in 

Ramezankhani A. and Azizi F.’s study [9,10].  

This study used the tanH operator to scale the dataset into 

0 – 1 range values. TanH operator has been reported by 

Nandakumar, Ross, and Jain in Thangasamy S. and Latha 

L. studies has robust and efficient performance [11]. 
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Where S’k is the product of the operation, the μ and σ are 

the row’s mean and standard deviation respectively. As 

the dataset has many features, this study used features 

selection techniques such as chi-square and Spearman 

correlation techniques to reduce the number of features. 

This feature selection technique was also implemented in 

Fitni, Q.R.S and Ramli K, showing that chi-square has 

faster learning time and Spearman correlation has higher 

learning metric results [12]. 

3. Ensemble Classifier 

The processed data set was used to train a single classifier. 

There were five single classifiers used in this study. The 

five single classifiers were decision tree, support vector 

machine, k-nearest neighbour, naive Bayes, and random 

forest. The four single classifiers were trained using a 

dataset that had been processed using Spearman and chi-

square techniques. The training results of the single 

classifiers were compared to get the three single 

classifiers that have the best performance metrics. The 

feature selection technique that yields the highest metric 

was also used for ensemble classifiers training. The three 

best single classifiers were made into ensemble 

classifiers. This study used four ensemble classification 

algorithms: majority voting, boosting, bagging, and 

stacking. 

 

4. Classification Metrics 

This study used common metric to determine the 

performance of the model. These metrics were the 

following: 

 Accuracy 

The percentage of samples which correctly classified 

compared to total samples. 

�����
�� = �� �!
�� �! "� "!              (2) 

 Recall 

The proportion of all x categories samples that eventually 

correctly classified as x categories. This metric reflects 

the ability of the classifier to detect anomalies. 

#$�
%% = ��
�� "!   (3) 

 Precision 

The ratio between correctly classified categories and 

falsely classified categories. 

&�$�'(')� = ��
�� "�           (4)  

 F1 

The F1 score is a ratio between recall and precision. F1 

metric also shows the relationship between false positives 

and false negatives observed in the experiment. 

*1 = �∗+,-./0/12∗,-.344
+,-./0/12 ,-.344         (5) 

 Area Under Curve Test 

The metric is a probabilistic curve between the true 

positive rate and false positive rate at some threshold 

value. This metric also shows how machine learning 

differentiates the classification target class. The 

interpretation of the area under curve graph is as follows: 

o The average value of sensitivity for all possible 

values of specificity 

o The average value of specificity for each possible 

value of sensitivity. 

 Data Retention Test 

The application would be tested on how the application 

can handle the data sent by the sniffer. The formula used 

for the testing: 

5
	
#$	$�	')� = �16347363�38-9
�16347363�-26 ∗ 100%      (6) 

III. Results and Discussion 

This study used kaggle online environment in the 

experiment. The python programming language was used 

alongside sklearn, NumPy, and pandas library. 

 

A. Dataset Preparation 
The CSE-CIC-IDS 2018 dataset contained packet capture 

(pcap), logs, labels, and the comma-separated-value 

(CSV) files from the dataset’s source. The normal 

(benign) and attack- type network activity was distributed 
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inside several CSV files. This study used CSV files to 

train and test the model. Inside the dataset, this study 

found that some missing and infinite-value columns need 

to be deleted. This removal goal was to avoid the program 

throwing an error. Table 2 shows the amount of infinite-

value and missing-value inside the dataset. 

 
Table 2. Missing and Infinity Values 

Data Type Total 

Missing Value 17079 

Infinity Value 20280 

The dataset was applied to the label encoding operation. 

The label encoding operation was an operation that was 

used to change a categorical feature into a numerical 

feature. This study applied this operation to the ‘Label’ 

feature. As the feature has 11 unique values, this study 

also maps it into 11 different integer values. Table 3 

shows the categorical feature with its corresponding 

integer value. 

Table 3. Categorical Value Mapping to Numerical Mapping 

Category Numerical 

Benign 1 

DDOS attack-HOIC 2 

Bot 3 

 FTP-Brute force 4 

SSH-Brute force 5 

 DoS attacks-GoldenEye 6 

 DoS attacks-Slowloris 7 

 DDOS attack-LOIC-UDP 8 

Brute Force -Web 9 

 Brute Force - XSS 10 

 SQL Injection 11 

 

B. Feature Engineering 

The cleansed dataset will be a subject of the feature 

engineering process. The feature engineering process 

aimed to scale and reduce features inside the dataset. The 

dataset features were selected with two methods, chi-

square and Spearman’s coefficient ranking correlation. 

Chi-square’s test of independence used two hypotheses to 

determine which features have a strong relationship with 

label features. The following hypothesis was used to 

determine the connection between the tested and response 

features: 

 H0 = tested feature is connected to response 

feature 

 H1 = tested feature is not connected to response 

feature 

The hypothesis was tested using an alpha value of 95%. 

If the test failed to reject the null hypothesis, the 

corresponding feature would be deleted from the dataset. 

Ten features were considered duplicates of other features; 

thus, those were deleted from the training and testing set. 

Table 4 shows ten features that are deleted from the 

training and testing set: 

Table 4. The Removed Feature from Dataset Using Chi-Square 

Technique 

No Feature Name No Feature Name 

1  Bwd Blk Rate Avg 6 CWE Flag Count 

2  Bwd Byts/b Avg 7  Fwd Blk Rate Avg 

3 Bwd PSH Flags 8 Fwd Byts/b Avg 

4 Bwd Pkts/b Avg 9 Fwd Pkts/b Avg 

5 Bwd URG Flags 10  Fwd URG Flag 

Spearman correlation ranking selected highly correlated 

features. This study deleted features with robust 

correlation based on features’ correlation coefficient. 

Table 5 shows the coefficient value and its corresponding 

description. 

Table 5. Spearman Coefficient and Description 

No Value Description 

1 0.0 – 0.19 Very Weak 

2 0.2 – 0.39 Weak 

3 0.4 – 0.59 Medium 

4 0.6 – 0.79 Strong 

5 0.8 – 1.0 Very Strong 

There are 45 features deleted from the training and testing 

set by using spearman correlation ranking correlation. 

C. Ensemble Classifier Training and Metric Evaluation 

 This study compareed the average results metrics of 

five single classifier, to determine which feature selection 

techniques to use for ensemble classifier training. As a 
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reference, this study also included the average results 

metrics trained with the data without feature selection. 

Table 6 shows the average metric value for each single 

classifier algorithm. 

Table 6. The Comparison of Single Classifier Metrics 

Algorithm No Feature 

Selection 

Chi Square Spearman 

Decision Tree 97.17% 100% 96.61% 

Naive Bayes 34.12% 33.98% 61.07% 

SVM 76.60% 78.94% 78.99% 

Random Forest 97.77% 97.82% 97.77% 

KNN 98% 99.94% 98.82% 

The chi-square performs well, with the highest being 

100% average performance metric using the decision tree 

classifier. Other classifiers such as support vector 

machine, random forest, and k-nearest neighbour also 

perform better when the training data was being processed 

with chi-square feature selection. The only exception was 

naive Bayes with 61.07% while using Spearman feature 

selection.  

The ensemble classifier training and evaluation phase 

used the chi-square feature selection technique, decision 

tree, random forest, and KNN as single classifier 

components. Four ensemble classifier algorithms were 

evaluated to determine which algorithms have the highest 

metrics. Table 7 shows the frequency of each target label 

inside the processed database. 

 Table 8 shows brute force average detection metrics 

for each ensemble classifier. The stacking ensemble 

algorithm had the highest average metric with 94.87%, 

99.94%, 98.82%, and 99.37% in accuracy, precision, 

recall, and F1, respectively. This metric showed that the 

stacking ensemble algorithm de- livers accurate results 

and that most of the predicted class was correctly 

predicted. Other ensemble classifier algorithms such as 

majority boosting, boosting, and bagging were also 

perform well, with an average metric around 95%. 

Table 7. Categorical Feature to Numerical Mapping 

No Category Training Set Testing Set 

1 Benign 80020 19980 

2 FTP-Brute Force 80104 19896 

3 SSH-Brute Force 80127 19873 

4 DdoS Attack-HOIC 79763 20237 

5 Bot 80120 19880 

6 DoS Attack -GoldenEye 80033 19967 

7 DoS Attack-Slowloris 80004 19996 

8 DdoS attack LOIC-UDP 79934 20066 

9 Bruteforce - Web 80034 19966 

10 Bruteforce - XSS 79835 20165 

11 SQL Injection 80026 19974 

 

Table 8. The Ensemble Classifier Metric’s Result Chi Square 

Technique 

Algorithm Accuracy Precision Recall F1 

Majority 

Voting 

97.17% 94.76% 94.94% 94.84% 

Boosting 93.33% 95.67% 92.23% 94.49% 

Bagging 94.60% 94.80% 94.63% 94.7% 

Stacking 94.87% 99.94% 98.82% 99.37% 

 

 The area under curve test conducted to determine 

stacking algorithm’s capability to separate each label 

correctly. Figure 1 shows area under curve test result of 

stacking algorithm.  

Figure 1. Area Under Curve Test Result 
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Figure 1 shows that Area Under Curve result reaching ~1 or 

100%. This shows that model capability to separate each label 

is good. 

Data retention test was conducted by sending sniffed 

data from application sniffer. The data sent to a message 

broker (Apache Kafka) and consumed by the web server. 

Then, the data received by the web server. The following 

is total data being sent from application sniffer: 

Figure 2. Total Data Sent by Application Sniffer 

Figure 3. Total Data Saved in Database 

 Figure 2 shows that there are 146 data are being 

publish to Apache Kafka. From the Apache Kafka, the 

data were consumed by the web service and saved into its 

database. This is the total data successfully saved into the 

database. Figure 3 shows that 123 data rows being saved 

by database. Thus, the retention rate calculated with (5) 

formula is: 

5
	
#$	$�	')� = 123146 ∗ 100% = 84.24% 

 The application also had feature to show the 

approximate location of the source and destination IP 

address as shown at figure 4. Figure 4 shows that the 

destination IP was from Surabaya Indonesia and 

Destination IP was from Maine, United States of 

America. 

Figure 4. The Approximate Location of the Source and 

Destination IP Address 

 Stacking algorithm was also tested against other 

dataset which usually used to train model related to cyber-

attack. The study uses NSL-KDD dataset to verify the 

robustness of the proposed study. Table 9 shows the 

training and testing set used to train and test the stacking 

model. 

Table 9. Training and Testing Set (NSL KDD) 

Name Total 

Training Set 13600 

Testing Set 3400 

 

Before the training set used to train the model, it will 

process through chi-square technique and its value would 

be normalized using tanH operator. Table 10 shows the 

performance result of stacking algorithm trained with 

NSL KDD dataset. 

Table 10. The Performance Result of Stacking Algorithm Trained 

with NSL-KDD Dataset 

Algorithm Accuracy Precision Recall F1 

Stacking 99.2% 97.61% 98.59% 98.09% 

 

Table 10 shows that although stacking algorithm trained 

with other dataset, it retained its robustness by 99.2%, 

97,61%, 98.59%, and 98.08% in accuracy, precision, 

recall, and F1, respectively. 

IV. Conclusion 

1. Feature selection technique such as chi-square and 

spearman can be used to reduce dataset dimension.  
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2. The process of building machine learning model 

comprised in several steps, such as data normalization 

using tanH operator, and train, of each of single classifier 

was using sklearn library. From the training, the decision 

tree algorithm reached the highest metric score with 100% 

and 99.61% average using chi-square and spearman 

technique respectively. 

3. The performance of an ensemble classifier is reliant on 

the performance of its individual classifiers. For instance, 

the stacking algorithm's performance may be inferior to 

that of a decision tree due to the impact of other individual 

classifiers on the prediction process. 

4. The quantity comparison between two study showed 

that stacking algorithm was outperforming the other 

studies by 2 – 10%. 

5. The area under curve test showed that stacking 

algorithm can separate each of label class accurately with 

the 99.16% score. 
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