Commisioning Test of 3 x 3kW Solar Power Plants for Laboratory Purpose

A. M. Shiddiq Yunus¹*, Nur Hamzah¹, Musrady Mulyadi¹, Firman¹, Yusuf Yunus¹, Marhatang¹, Chandra Bhuana¹, and Yiyin Klistafani¹

¹ Mechanical Engineering Department, State Polytechnic of Ujung Pandang, Jalan Perintis Kemerdekaan KM. 10 Makassar 90245
* Corresponding Author: shiddiq@poliupg.ac.id

Abstract—The laboratory is an important thing in the learning and teaching process so it is very necessary to upgrade both in terms of equipment and in terms of laboratory management standards. State Polytechnic of Ujung Pandang has carried out the design process for a solar power plant (SPP) system with a capacity of 3 x 3kW to support the learning process related to alternative and renewable energy lectures and practicum. One part of the procedure for activating newly installed laboratory equipment is the commissioning test. From the commissioning results, the results show that 3 x 300 Wp and independent 375 Wp SPP can work well with an average DC voltage rating of 80 V and for AC loads with an average voltage of 220 V. All types of loads, both AC and DC can work properly after going through the DC Couple and AC Couple with the inverter.

Keywords—SPP; Commissioning; DC Couple; AC Couple

I. Introduction

The need for new and renewable energy is increasing from year to year so that construction projects and installations of power plants based on new and renewable energy throughout the world have reached 3064 GW in 2021 [1]. One of the popular energies is SPP which until the end of 2020 has installed 788 GW globally [2]. Some of the advantages of solar power plants are free energy sources, low maintenance costs and not very site specific [3]-[5].

To support the need for skilled workers in the field of renewable energy such as SPP, educational institutions need to prepare resources, both human resources and supporting facilities and infrastructure.

One strategy that can be applied is the teaching factory, which is an approach to industrial activity that is brought to the laboratory or class to conform to industry standards [6].

The laboratory is a very important part of the education and teaching system, especially in vocational higher education. Activities in the laboratory are not only for practicum but also for research activities [7]. Therefore laboratory development is a must, especially if the laboratory is related to curriculum development and study programs that also use the laboratory.

State Polytechnic of Ujung Pandang as a leading vocational education institution in eastern Indonesia, continues to improve itself by opening several new study programs and continuing to develop its curriculum based on industry needs. One of them is related to the need for a laboratory to support the learning process of theory and practice related to alternative energy. Therefore in 2022 the design and procurement of a 3x3 kW solar will be carried out. To ensure the appropriateness of the laboratory that is manually designed, a commissioning test is required to fulfill the experimental results [8].

DOI : http://dx.doi.org/10.31963/intek.v10i1.4279
II. Methodology

The study was carried out using the stages as shown in Figure 1.

Figure 2 shows the layout of a SPP system consisting of a DC coupling and an AC coupling, including SCC, battery, inverter and generator.

![Figure 1. Stages of the study](image1)

![Figure 2. Singe line Diagram of the SPP system for the Laboratory Purpose.](image2)

III. Results and Discussion

Figure 4-Figure 7 shows the physics of the SPP located in the Renewable Energy Building at the Ujung Pandang State Polytechnic.

![Figure 3. Layout of the SPP system for the Laboratory Purpose.](image3)

![Figure 4. 375 Wp Solar Panel](image4)

![Figure 5. 3 kWp Solar Panel-1](image5)

DOI: http://dx.doi.org/10.31963/intek.v10i1.4279
Commissioning results is shown in Table 1 - Table 3.

Table 1. SCC Commissioning Test Result

<table>
<thead>
<tr>
<th>Merk and Type</th>
<th>Outback</th>
<th>Sunnyboy</th>
<th>Victron SCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed Capacity</td>
<td>4000 Watt</td>
<td>3000 Watt</td>
<td>400 Watt</td>
</tr>
<tr>
<td>Number of Installed SCC</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>48 V</td>
<td>220 V</td>
<td>24 V</td>
</tr>
</tbody>
</table>

Table 2. Battery Commissioning Test Result

<table>
<thead>
<tr>
<th>Merk and Type</th>
<th>BiruBatt 6648100</th>
<th>Nagoya</th>
<th>Nagoya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity and Voltage per Cell</td>
<td>100 Ah, 48 V</td>
<td>100 Ah, 12 V</td>
<td>100 Ah, 12 V</td>
</tr>
<tr>
<td>Number of Total Battery</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Number of Battery in Series</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3. Inverter Commissioning Test Result

<table>
<thead>
<tr>
<th>Merk and Type</th>
<th>Outback</th>
<th>Sunny Island</th>
<th>Victron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed Capacity</td>
<td>5700VA</td>
<td>3000 W</td>
<td>375 W</td>
</tr>
<tr>
<td>Number of Total Installed Inverter</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Number of Phase</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>220 V</td>
<td>220 V</td>
<td>-</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>220 V</td>
<td>220 V</td>
<td>220 V</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
<td>50 Hz</td>
<td>50 Hz</td>
</tr>
</tbody>
</table>

AC Couple Voltage

Group Array 1: 344.7 Volt
Current at Array 1: 0.4 A

DC Couple Voltage

Group Array 2: 81.8 Volt
Current at Array 2: 13.2 A

SHS

Group Array 3: 27.5 Volt
Current at Array 3: 1.42 A

Measurement of DC Load

Lamp 1: 24 Volt, 5 Watt
Lamp 2: 24 Volt, 5 Watt

Measurement of AC Load

Lamp 1: 220 Volt, 5 Watt
Lamp 2: 220 Volt, 5 Watt

The possible jobs that would be applied to students including stand-alone DC and AC Couple, grid connected and also hybrid with other sources such as gen-set.

DOI: http://dx.doi.org/10.31963/intek.v10i1.4279
IV. Conclusion

From the commissioning tests, the results show that 3 x 3 kWp and independent 375 Wp SPP can operate well with an average DC voltage rating of 80 V and for AC loads with an average voltage of 220 V. All types of loads, both AC and DC can work properly after going through the DC Couple and AC Couple with the inverter.

Acknowledgement

Authors would like to thank RESD-SWISS and Matching Fund Support for the realization of this study.

References

DOI : http://dx.doi.org/10.31963/intek.v10i1.4279