Pengaruh Desain Interior Diffuser Terhadap Peningkatan Performa Diffuser Augmented Wind Turbine (DAWT)

Yiyin Klistafani, Muh Iqbal Mukhsen, Muh Iqbal Mukhsen


The main objective of numerical simulation in this
studies is to determine the effect of diffuser’s interior design on
increasing the diffuser augmented wind turbine (DAWT)
performance by observing wind velocity increment. Numerical
studies were carried out using the computational Fluid Dynamics
(CFD) method through a two-dimensional steady approach with
Ansys Fluent 18.2 and Ansys Workbench 18.2 software. The
present studies spesifically investigate the shapes of diffuser,
namely flat diffuser and curved diffuser. The studies demonstrate
that the curved diffuser generates stronger increment of the wind
velocity than flat diffuser (at centreline), which 1.842 times the
freestream velocity, while the flat diffuser is only able to increse
up to 1.742 times the freestream velocity. The curved diffuser
shows the highest increment of the average wind velocity along
diffuser with the greatest increment of 78.66 % and the flat
diffuser is only able to provide average wind velocity increment
up to 44.81%. The curved interor of diffuser is able to enlarge the
wake area, so the effect of the suction flow entering the diffuser
becomes stronger. Therefore, curved diffuser is better to provide
DAWT performance improvements.


Syahrul, “Prospek pemanfaatan energi angin sebagai energi

alternatif di daerah pedesaan,” Media Elektrik, vol.3 no.2,

hal.140-144, 2008.

Y. Ohya, T. Karasudani, A. Sakurai, K. Abe, and M. Inoue,

“Development of s shrouded wind turbine with a flanged

diffuser,” Journal of wind engineering and industrial

aerodynamics, 96, pp. 524-539, 2008.

D.W. Purwanto dan A.M.T. Nasution, “Interior lengkung

diffuser untuk peningkatan performansi diffuser augmented

wind turbine (DAWT),” Prosiding seminar nasional energi

terbarukan Indonesia I, 2010.

M. Lipian, M. Karczewski, and K. Olasek, “Sensitivity study

of diffuser angle and brim height parameters for the design of

kW diffuser augmented wind turbine,” Open engineering, 5,

pp. 280-286, 2015.

A.T.H. Wibowo, R.A. Wahyuono, dan G. Nugroho, “Studi

numerik pengaruh geometri dan desain diffuser untuk

peningkatan kinerja DAWT (diffuser augmented wind

turbine),” Jurnal Teknik Mesin, vol. 14 no.2, hal.90-96, ISSN

-9867, 2013.

J. Hu, W. Wang, “Upgrading a shrouded wind turbine with a

self adaptive flanged diffuser,” Energies, 8, pp.5319-5337,

K. Abe and Y. Ohya, “An investigation of flow fields around

flanged diffusers using CFD,” Journal of wind engineering

and industrial aerodynamics, 92, pp.315-330, 2004.

F.R. Menter, “Two-equation eddy-viscosity turbulence

models for engineering applications,” AIAA journal, 32(8),

pp.1598-1605, 1994.

B.E. Launder, D.B. Spalding, “Mathematical models of

turbulence,” Academic press, 1972.

D.C. Wilcox, “Turbulance modelling fo CFD”. DCW

Industries, 1993.

G. Bangga and H. Sasongko, “Dynamic stall prediction of a

pitching airfoil using an adjusted two-equation URANS

turbulence model,” Journal of Applied Fluid Mechanics,

(1), pp.1-10, 2017.

G. Bangga, T. Kusumadewi, G. Hutomo, A. Sabila, T.

Syawitri, H. Setiadi, M. Faisal, R. Wiranegara, Y. Hendranata,

D. Lastomo, L. Putra, “Improving a two-equation eddyviscosity

turbulence model to predict the aerodynamic

performance of thick wind turbine airfoils,” Journal of

Physics: Conference Series, 974(1), 012019, 2018.

A.L. Pape, and J. Lecanu, “3D Navier–Stokes computations of

a stall regulated wind turbine,” Wind Energy, 7(4), pp.309-

, 2004.

N.N. Sørensen, J.A. Michelsen, S. Schreck, “Navier–Stokes

predictions of the NREL phase VI rotor in the NASA Ames

ft × 120 ft wind tunnel,” Wind Energy, 5(2-3), pp.151-169,

P. Weihing, J. Letzgus, G. Bangga, T. Lutz, and E. Krämer,

“Hybrid RANS/LES Capabilities of the Flow Solver

FLOWer—Application to Flow Around Wind Turbines,” In

Symposium on Hybrid RANS-LES Methods Springer, Cham,

pp.369-380, 2016.

E. Jost, A. Fischer, G. Bangga, T. Lutz, E. Krämer, “An

investigation of unsteady 3-D effects on trailing edge flaps,”

Wind Energy Science, 2(1), pp.241-256, 2017.

Y. Klistafani, “Studi numerik steady RANS aliran fluida di

dalam asymmetric diffuser,” Journal INTEK, vol. 4 (1),

pp.20-26, April 2017.

Y. Klistafani, “Karakteristik aliran fluida di dalam asymmetric

diffuser dengan penambahan vortex generator,” Journal

INTEK, vol. 5 (1), pp.21-26, 2018.

Y. Klistafani, M.I. Mukhsen, and G. Bangga “Assessment of

Various Diffuser Structures to Improve the PowerProduction

of a Wind Turbine Rotor,” Technische Mechanik, vol. 38,

pp.256-266, 2018.



  • There are currently no refbacks.

Publisher by:

Politeknik Negeri Ujung Pandang
Kampus 1 Gedung Administrasi Lantai II
Jalan Perintis Kemerdekaan KM.10 Tamalanrea
Makassar 90245

INTEK Indexed by:


 Member of :

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 View My Stats